
Dark Matter, Dark Energy and Critical Density

Summary: This article examines the question of critical density and
its requirement of dark matter and dark energy. We propose an alternative.

Let us begin with the cosmological equations in their original form with-
out a cosmological constant Λ.
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We get (3) by adding (1) and (2). The parameter k represents the tri-
curvature and has values −1, 0, 1. The scale parameter is a and the dot
represents differentiation with respect to time. The Hubble parameter is
H = ȧ/a.

The solution for k = 0 and p = 0 is a = a0t
2/3. Then the critical density

separating positive from negative curvature is ρc = 1
6πGt2

. We also have
1
a3

= 1
a30t

2 . Therefore ρc =
a30

6πGa3
and therefore ρc ∝ a−3.

However, this conclusion only holds for p = 0. How does ρc depend
on p? The rate of change of energy density is given by ρ̇ = −3(ρ + p)H.
Dividing through by ρ, ρ̇ρ = −3(1+p/ρ)H = −3(1+w)H. From (1), the crit-

ical density ρc = 3H2
c

8πG where Hc is the critical value of the Hubble parameter.
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We can see that Ḣc = aä−ȧ2
a2

< 0 must be exactly balanced with p to
maintain critical density.

We can observe that ρ > ρc requires k = 1 and ρ < ρc requires k = −1.
It has been estimated that the observable Universe contains about 4% of
the matter required to achieve ρc which would seem to imply that k = −1,
the Universe has negative curvature, and is expanding somewhat faster than
the speed of light.

For a variety of reasons, this conclusion was unacceptable and it ap-
peared necessary to fill the 96% with something. In the mid to late 1990s,
observations were made which seemed to imply the expansion of the Uni-
verse was accelerating. Efforts were then made to revive the concept of a
cosmological constant that would act in a repelling manner and would only
be observable when the distances were quite large.

The cosmological equations were then modified to include the cosmolog-
ical constant:
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Λ acts like a ’perfect fluid’ with ρΛ = Λ/8πG and pΛ = −ρΛ.

So, we can substitute Λ = 8πGρΛ in (4) and Λ = −8πGpΛ in (5) and
get the equations:
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We have set p = 0 in accordance with the Friedmann ’dust solution’
where non-relativistic matter has negligible pressure. We also allow that ρ
includes cold dark matter which is currently the fashion.

From (8) we can see that the limiting value (as ρ → 0) of ä
a = Λ

3 . Us-
ing (6) and k = 0, the limiting value for the critical density is ρΛ = constant.

A DeSitter Universe is one with no matter but with a cosmological con-
stant Λ. It describes a spatially flat Universe devoid of matter expanding
exponentially with a = eHt where H is the Hubble parameter ȧ/a. The

λ-CDM model described above is asymptotically DeSitter with H =
√

Λ
3 .

There is another empty solution that is seldom, if ever, discussed. That
is the spatially negative solution. Letting ρ = 0 and k = −1 in equation
(1), we get ȧ = 1. That is, the expansion rate is constant (H = 1/a) at the
speed of light.

In accord with Occam’s Razor we should ask whether Λ is necessary. Is
an alternate view possible?

We could accept that the actual density of the Universe is 4% of criti-
cal and accept that it is not spatially flat. If ρ < ρc then the Universe is
dominated by negative curvature and in those regions that have negative
curvature the expansion ȧ ↓ 1 as ρ ↓ 0.

If r = l/a is a relatively small (z < 1) co-moving distance in flat space
then sinh(r) and sin(r) are the corresponding co-moving distances in nega-
tively and positively curved space respectively. Now, consider the following
diagram:

The vertical lines represent the world-lines of galaxies given in co-moving
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coordinates. The central vertical line represents our galaxy. The bottom
horizontal line represents the red-shift value z = 1. The sides of the isosce-
les triangle represent our past light cone under the assumption the Universe
is spatially flat. The concave and convex lines represent our past light cone
under the assumption of negative and positive spatial curvature respectively.
The red line is the co-moving distance under the three different spatial as-
sumptions. Under the assumption of flatness the distance is given by the
well known linear Hubble relation HD = cz. For a given z, D will be slightly
greater in the negative case and slightly less in the positive case than that
predicted for a flat Universe. It has been observed that D is somewhat
greater than the value predicted by the Hubble relation for a flat Universe.

We can represent the three optical distances* as follows (Carroll, Sean,
2019, p.348) and (Peebles, PJE, 1993, p.319):
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Consider two points of equal co-moving distance with one on the concave

curve and the other on the straight line. As light passes through negatively
curved space, parallel rays will diverge. So under the assumption of the
inverse-square law, the optical distance using a standard candle (e.g. a su-
per nova of known brightness) will appear greater (for the same co-moving
distance) than if space were flat. Consequently, in a negatively curved space,
the co-moving distance of galaxies is greater (for the same look-back time)
than in flat space and they also appear even more distant due to the reduc-
tion in electromagnetic flux.
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In the above figure the black lines represent rays traveling through flat
space from a and converging on a focal point. The blue lines represent rays
traveling from a through negatively curved space. The red triangle repre-
sents how the object appears further and dimmer at b.

In 2003, Saul Perlmutter discussed his supernova results for which he
had won the Nobel proze in the previous decade. The reader may find this
paper at http://www-supernova.lbl.gov/PhysicsTodayArticle.pdf

Essentially he had shown that the expansion of the Universe was speed-
ing up and not slowing down as predicted by all models up to then. The
following is a graphical excerpt from that paper.

And the following represents the data schematically:
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The distance measurements were based on standard candle measure-
ments of distances to supernovae with a known brightness. Here’s the prob-
lem: If the inverse-square law was used to compute distances based on
apparent brightness vs known brightness then possible errors can creep in.
If the Universe were known to be flat the inverse-square law would work
fine. However, curved space affects the apparent distance as shown three
diagrams above. To be more precise, negative curvature would produce ex-
actly what Perlmutter’s data showed. The next diagram shows a correction
for this effect bringing the data in line with what would be predicted by
negative curvature.
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We can actually use Perlmutter’s data to determine the extent to which
negative curvature affects apparent distance.

Let’s consider this further. Under the consensus model (λ − CDM),
ρ + ρΛ = ρc, where ρc is the critical density required for a flat Universe. ρ
contains all sources of mass-energy excluding dark energy but including cold
dark matter.

Using the third cosmological equation, 8πG
3 (ρ + 3p) = −2 äa and setting

p = −ρΛ we get 8πG
3 (ρ − 3ρΛ) = −2 äa . In the past when ρ − 3ρΛ > 0 the

expansion was slowing down and eventually since ρ−3ρΛ < 0 the expansion
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has been accelerating. This is under the assumption the Universe is spatially
flat.

Consider the alternate view that ρ consists of the known mass-energy of
the Universe and is at present around 4% of ρc. Using the third cosmological
equation again with p = 0, 8πG

3 (ρ) = −2 äa . So, ä < 0 and is approaching zero
as ρ decreases. There is a big difference between this and λ−CDM . We as-
sert the difference is due to the errors introduced by using the inverse-square
law for distances which relies on flat space. The differences arise when actu-
ally the Universe is spatially curved negatively as explained above. So, we
may consider what we may call the Perlmutter et al procedure as a classic
case of comparing apples to oranges.

First they calculate distances relative to red shift for the three curvatures
using the DA formulae. Then they calculate distance relative to redshift
using the inverse-square law. But in negatively curved space things look
further away than they really are, hence the deviation from all three mod-
els. Nevertheless, the k = −1 case is closest to the data. The interpretation
closest to the facts would be that negatively curved space distorts distance
measurements more than expected (based on the DA formula) and there is a
disagreement between distance measurements relative to red shift and those
from using the inverse-square law (the latter relying on the flatness of space).

The exaggeration in distance measurement due to the negative curva-
ture of space must be exponential. (Consider the case of concave mirrors
facing each other.) So, an exponential correction value must be found to
compensate.
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Using the R-W metric

dσ2 = a2sinh2χdΩ2 (9)

dσ2 = a2r2dΩ2 (10)

dσ2 = a2sin2θdΩ2 (11)

dΩ2/dσ2 = ApparentBrightness
IntrinsicBrightness = 1

(OpticalDistance)2

Equation (10) is the inverse square law. Equation (9) shows how nega-
tive curvature affects the above ratio.

Using (10), 1
D2 = 1

a2r2
. Using (9), 1

D′2 = 1
a2sinh2χ

. Then D′ = sinhχ
r D.

So the correction factor must be r
sinhχ .

So, we have the distance based on the inverse square law and standard
candles, the actual distance after applying the correction factor, and the
distance based on red shift (DA) for k = −1.

Our conclusion is that the cosmological constant Λ is an illusion resulting
from the difference in distance calculation in flat space versus curved space.

*There are (at least) three types of distance to consider in cosmology:

1) The current distance which we call Dnow which we cannot directly
observe; 2) The lookback distance which is the lookback time multiplied by
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the speed of light; 3) The apparent distance of an object from the point of
view of an observer. This involves either calculating distance using red shift
or using the apparent brightness of known standard candles versus their in-
trinsic brightness. It is this third group we refer to as optical distance.

********************************

Text is available under the Creative Commons Attribution-ShareAlike
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