Electromagnetism

Summary: Here we derive the Maxwell equations using the method
of differential forms. We will define a 1-form A (a gauge) which we will
show emerges as a relational decomposition of zero which we will denote
by 0 — w? + (*w)?. We will use this idea throughout the remainder of our
articles, especially in A Theory of Origins. A relational decomposition of
zero is, as the name implies, relational and is not dependent ontologically
on anything else (except space-time) for its existence. We show later that
space-time itself is also a relational decomposition of zero.

Let A = Adt + Azdx + Aydy + A.dz be the electromagnetic 1-form.
We calculate the Faraday 2-form as:

dA = (0;Ardt + 0, Ard + 0y Avdy + 0, Avdz) A dt
+(0Agdt + 0, Agdx + 0y Azdy + 0, Azdz) N dx
+(0iAydt + 0, Aydx + 0y Aydy + 0. Aydz) A dy
+(0LA.dt + 0, A dx + 0y A.dy + 0, A.dz) Ndz

(0, A — O A)dy A dt
(0. A; — 0,AL)dz A dt
+(0, Ay — 0yAz)dx N dy
+(0yA; — 0. Ay)dy N dz

+(0, A, — 0, A,)dz N dx
which is a vector in a 6 dimensional space of 2-forms. The dimension of

the space of p-forms of a n-dimensional space, denoted dim(AP) = ( » )

which in this case =6. The anticommutivity used above is based on a fact
about forms that a A B = (—1)¥B A a where « is a k-form and § is an
l-form. Also used above is the fact that for a 1-form o, a Ao = —aAa = 0.
Furthermore, notice that dA has the same form as the curl of a vector field
but in a higher dimension where the curl is not defined. In the following we
shall write A,/, By... as A", Bl... . Though the former is more technically



correct, the latter is easier to read.

For simplicity we set:

B, = 0,A, — 0.A,
B, = 0.4, — 0, A,
B. = 0, A, — 0,A,

which are the components of the magnetic field vector.

And
Ex = axAt - 8tAa:
E, = 0,4, — 0, A,
E. = 0.A - O,A,

which are the components of the electric field vector.

We then write dA in terms of these components:

dA = Eydx A dt
+E,dy A dt
+E.dz N\ dt
+B.dx A dy
+B,dy A dz
+Bydz N\ dx
We next calculate d(dA). We use the same method as for A.

d(dA) = (0, Eydt + Oy Eydx + Oy Eydy + 0, Eydz)dx A dt
O Eydt + 0, Eydx + 0y Eydy + 0, Eydz)dy A dt
O E.dt + 0, E.dx + OyE.dy + 0,E.dz)dz A dt
+(8Badt + 8, B.dx + 8,B.dy + 0. B.dz)dz A dy
+(0yBypdt 4+ 0y Bydx + 0y Bydy + 0, Bydz)dy A dz
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+(0¢ Bydt + 0y Bydx + 0yBydy + 0,Bydz)dz N\ dx

d(dA) = (0, Ey — OyEy + 0, B.)dx N dy A dt
+(OyE, — 0.Ey + 0,By)dy N dz A dt
+(0.Ey — 0, E, 4+ 0;By)dz N dx A\ dt
+(0: By + 0yBy + 0, B.)dx AN dy N dz
which is a vector in a 4 dimensional space of 3-forms. That is, dim(A3}) =

4
( 3 > = 4. The anticommutivity used here is based on, for example,

de Ndy Ndz = (de ANdy) Ndz = (—dy ANdx) Ndz = —dy Ndx A dz

It is a well established theorem in the calculus of forms that d> = 0. So,
setting d(dA) = 0 we get from the first three equations V x E = —88—]? and
from the last V- B = (. These are two of Maxwell’s equations in empty
space.

To derive the other two equations we use the Maxwell 2-form which is

the dual to the Faraday 2-form.

Expressing the dual by its components we have:

E, 000 -1 0 0 E,
E, 000 0 —1 0 E,
A B {_[o0o0 0 0 E,
B, 100 0 0 0 B,
B, 010 0 0 0 B,
B 001 0 0 0 B

w

Then

xdA = —Bgdx A dt
—Bydy A dt
—B,dz ANdt
+FE.dx N dy
+Exdy N dz



+Eydz N\ dx
Then

d(xdA) = —(0yBydt + 0, Bydx + 0yBydy + 0,Bydz)dx A dt

—(8Bydt + 8, Bydx + 8,B,dy + 0, B,dz)dy A dt
—(8B.dt + 0y Bodw + 8, B.dy + 0, B.dz)dz A dt
+(OE.dt + 0, E.dx + 0yE.dy + 0. E.dz)dx A dy
+(OpEpdt + Oy Epdx + OyEpdy + 0, Eydz)dy N dz
(

)
+(OEydt + 0y Eydx + 0y Eydy + 0,Eydz)dz A\ dx

d(*dA) = (=0, By + 0yB; + 0, E.)dx N dy A dt
+(=0yB. + 0.By + 01 E,)dy N dz A dt
+(0,B; — 0;By + 0:Ey)dz N\ dx A dt
+(0xEy + OyEy + 0. E,)dx Ndy N dz

So, setting d(xdA) = 0 we get from the first three equations Vx B = %—Et)
and from the last V - E = 0. These are the last two of Maxwell’s equations
in empty space. d?(A) = 0 and d x d(A) = 0 are Lorentz scalars and hence

invariant under a Lorentz transformation.
Lorentz covariance:

The Lorentz transformation describes space-time transformation between
inertial frames in motion relative to each other. We assume for simplicity
that the direction of motion is along the x-axis for each. Then the coordi-
nates transform according to the Lorentz transformation:

t cosh(a) sinh(a) 0 0 t
| | sinh(a) cosh(er) 0 O x
y | 0 0 1 0 Y
-4 0 0 0 1 z



where cosh(a) = ——— and sinh(a) = ——~—. c is assumed to be =1.

V1-v? V1-v?
cosh(a) is always positive but sinh(a) can be positive or negative depending
on the direction of motion.

It is clear that the 1-forms also transform as

dt’ cosh(a) sinh(a) 0 0 dt
dz’ | | sinh(a) cosh(a) 0 O dx
dy | 0 0 1 0 dy
dz' 0 0 0 1 dz

We begin first with the electromagnetic 1-form
A= Aydt + Apdx + Aydy + A.dz

In the alternate coordinates it is

Al = Ajdt' + Al dx' + Ay dy’ + ALd

So,

A= Adt' + Alda’ + Al dy' + ALd2
A" = Aj(cosh(a)dt + sinh(a)dx)
+ Al (sinh(a)dt + (cosh(a)dz)
—f—A/ydy/ + AldZ

Grouping terms we get:

A" = (Ajcosh(a) + Al sinh(a))dt
+(Ajsinh(a) + Al (cosh(a))dx
+ AL dy' + ALdZ'



So, A" = A if

Ay cosh(a) sinh(a) 0 0 Al
Ay | | sinh(a) cosh(a) O O Al
A, 0 0 10 || a4
A, 0 o o0 1/)\ A

More generally, let A be a coordinate transformation with a transpose
AT,

Let A = ( A A, A, A, ) = [A|Tdz

and A’ = [A'|Tdz = [ATATdz. Then A = A’ if [A]T = [A)TAT

Ay Al

. Ay | A,

That is, A, |~ A A;
A, A

In a traditional development of electromagnetism, the field is given by
B v 2
B=VxA

where the pair (¢, A) is called a gauge. The correspondence with our de-
velopment here is (A, Ay, Ay, A.) = (¢, Az, Ay, A;). Thatis, A = (A,, Ay, Az).

The traditional derivation of the Maxwell equations proceeds as follows:

Using the tensor

0 -E, —E, —E.
pw_ | B« 0 -B. B,
E, B. 0 —B,
E. -B, B, 0



OF" =
oF" =
oOF" =

—0;By — 0yBy — 0.B,
OB, + 0,E, — 0,F,
OBy — 0, E. + 0.E,
B, + 0.E, — 0,



Then 6”53,, =0
o F
8UF4II
implies
—0;B; — 0yBy — 0.B, -V-B
OBy + 0. B, — Oy F, | (VXE+0B), | _ 0
8tBy — 8;,;Ez + 82Ew o (v x E+ 8tB)y o
0B, + 0. By — 0,E, (VxE+9B),
Then V-B=0and VxE+9,B=0
0O -E., —-E, —LE.
v _ E, 0 -B, By
E, B, 0 —B,
E. -B, B, 0
OFY = —0,E,—0,E,— 0,E,
WFY = OE,—0yB,+ 0,By
WEY = OBy +0,B, — 0,8,
OFY = O,E,—08,B,+9,B;
8VF1V
8VF21/
Then 8VF3V — 0
aVF41/
implies
—0.E, — 0y, — 0. E, -V -E
O E, — 0yB, + 0.8y | GGE-VxB), | 0
8tEy + 0B, — 0,B, o (8tE -V x B)y o
OE, — 0, By + 0yB, (O, E -V x B),

Then V-E=0and -VxB+9E=0

So, in flat space-time 9, F* = 9, F" = 0 is equivalent to the Maxwell
equations. In general, V,F" = V,F"’ = 0 where V, is the covariant



derivative.
The Lorentz co-variance of the 1-form A corresponds to the Lorentz
co-variance of the 4-vector (¢, A, Ay, A;). That is, ¢? — A2 — AZ — A% s

invariant under Lorentz transformations.

Let A be a general Lorentz transformation. It is known that A preserves

1 0 0 0
. . . 0O -1 0 0
the Minkowski metric g = 0 0 -1 0
0 O 0 -1
1 0 0 0 Vo
0 -1 0 0 1
2 _
where [VIP= (%% Vi V2 V)| o 0 o || e
0 O 0 -1 V3

That is, ATgA = ¢
Setting [A]T = ( A Ay Ay A, ) we then have:

A — A7 — A) = A2 = [A]Tg[A] = (A[A])TgA[A] = [ATTATgA[AT] =
(AT gA].

Thus the co-variance of the 1-form establishes the co-variance of the
gauge.

Now, for the Faraday 2-form (with the boost direction along the x-axis):

dA" = ELda' A dt
+E;dy’ A dt’
+ELdZ A dt
+BLdx' A dy'
+BLdy' A d2
—I—Bz’/dz’ A dx!
Then



dA" = E. (sinh(a)dt + cosh(a)dz) A (cosh(a)dt + sinh(a)dx)
+E,dy’ A (cosh(a)dt + sinh(a)dzx)
+ELdZ' A (cosh(a)dt + sinh(a)dz)
+B.(sinh(a)dt + cosh(a)dz) A dy’
+BLdy' A d2
+B,,dz’ A (sinh(a)dt + cosh(a)dx)

and grouping terms gives:

dA" = E.dx A dt
+(E, cosh(a) — Bysinh(a))dy A dt
+(E.cosh(a) + Bysinh())dz A dt
cos sinh(a))dx N
+(Blcosh(a) — E}sinh(a))dz A dy
+Bldy A dz
+(Bycosh(a) + E.sinh())dz A dx

So, dA' = dA i

E, 1 0 0 0 0 0

E, 0 cosh(a) 0 0 0 —sinh(a)
E. |1 |0 0 cosh(a) 0 sinh(a) 0

B, | |0 0 0 1 0 0

B, 0 0 sinh(a) 0 cosh(c) 0

B, 0 —sinh(a) 0 0 0 cosh(a)
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1 0 0 0 0 0
0 cosh(a) 0 0 0 —sinh(a)
10 0 cosh(a) 0 sinh(«) 0
tet®=1,9 0o 1 0 0
0 0 sinh(a) 0 cosh(a) 0
0 —sinh(a) 0 0 0 cosh(a)
1 00 O 0 O
010 0 0 O
0 01 O 0 O
mdM=1"%090 -1 0 o0
000 0 -1 0
000 0 0 -1
Then M = "M ®
and consequently,
E? — B?
E,
Ly
E,
:(Ex E, E. B, B, BZ)M Py
By
B,
El
P
El
- (B, B, E. B, B, B.)®TM®|
B,
B}
El
~(E, E, E. B, B, B.)M gf
B,
B/

— (E/)Q _ (B/)Q
We can make the more general claim that the 6 components of any 2-
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form dM = FydzAdt+FydyAdt+F.dzAdt+G dxNdy+GdyNdz+GydzAdx

and hence any 6-vector, will transform in the same way. That is,

F, F!
F, F
F, F!
G G,
G, a,
G. €

Let 1,1, j,k be quaternions with multiplication table:

x|1] i ||k
1011 | |k
i1 -1 k | -
i3 k| -1] i
k k| j | -i|-1

and

(01 (0 —i (10
TT= 10 270 o) 270 -1

be Pauli spin matrices with multiplication table:

X I 01 (o) g3
I |1 o1 09 o3
o1 | o1 I 03 | —ioy
o9 | 09 | —to3 I 101
o3| o3| too | —ioq I

There is an isomorphism from the span of the quaternions {1, 1, j,k} to
the span of {I,io1,i09,i03,} given by (1,i,j,k) <> (I, —io1, —ioe, —io3) or
by (1, i,j, k) — (I, 103,109, iUl).

Let M=1M
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1 0 0 O 0 0

010 O 0 0

. 001 0 0 0
That is, M = 000 -1 0 0
000 0 -1 0

000 O 0 -1

We can identify I <+ 1 through either of the above isomorphisms and
get as a square root

o 0 0 0 0 0

0 oo 0 00 0
0o 0 o3 00 0
VM=1"9 0 0 i 0 0
0 0 0 03j 0

0 0 0 00 k

Then M = ®T M ® implies M = (vVM®)T+/M® and for the electromag-

netic 6-vector V7,
VIMV = (VMV)TVMV = (VMaV)TyMaV' = (V) TMV'.

The dual *dA should be invariant under the same transformation but
for completeness we show this:

xdA' = —Bldx' N dl
—Bydy' Adt’
—BLdZ A dl
+ELdx' A dy
+E!dy' A d2
+E;dz' A dx'

xdA" = —B.(sinh(a)dt + (cosh(a)dz) A (cosh(a)dt + sinh(ca)dx)

—B,dy’ A (cosh(a)dt 4 sinh(a)dz)
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—BLdZ' A (cosh(a)dt + sinh(a)dx)
+E.(sinh(a)dt + (cosh(a)dx) A dy'
+E!dy' A d2
+E,dz' A (sinh(a)dt + (cosh(a)dz)

and then grouping terms we get:

*dA' = —BlLdx A dt
—(Bycosh(a) + E.sinh(a))dy A dt
—(Blcosh(a) — E, sinh(a))dz A dt
+(E.cosh(a) + Bysinh(a))dx A dy

+ELdy A dz
+(E,cosh(a) — BLsinh(a))dz A\ dx

Then *dA = xdA’ if

E, 1 0 0 0 0 0 B
E, 0 cosh(a) 0 0 0 —sinh(«) B,
E. | | O 0 cosh(a) 0 sinh(a) 0 E/
B, |~ |0 0 0 1 0 0 B
B, 0 0 sinh(a) 0 cosh(a) 0 B,
B, 0 —sinh(a) 0 0 0 cosh(a) Bl

which is the same transformation making dA invariant.

d?A =0 and dxdA = 0 are invariant (as scalars) under the above trans-
formations.
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Maxwell’s four equations in vector notation are:

V-E=0;,-VxB+0E=0
V-B=0;VxE+9B=0

The explicitly co-variant form of the above equations is:

V-E=0,-VxB+V,E=0
V.- B=0;VXE+V,B=0
where V; is the co-variant derivative.

As already observed, Lorentz transformations preserve the Minkowski
metric. That is ¢ = ATgA. In Minkowski space O;E = V,E and 9;B = V,;B.

Therefore, the Maxwell equations are co-variant under a Lorentz trans-
formation A.

Example:

Suppose the boost direction is  and also suppose an electromagnetic
wave originating at some x > 0 and measured in (¢, x,y, z) as E = cos(kx —
wt)e, and B = cos(kx —wt)e,. Then the same wave measured in (¥, 2/, y, z)
would be E' = cos(k'z’ — w't')e, and B’ = cos(k'z’ — w't)e,.

Let 7' = /122, Then the wavelength X' =n~'A. So k' = 2 = nk.
Then for the moving frame E' = cos(nkz’ — w't')e,

and B’ = cos(nkx’ — W't )e..

Then Oy E' = w'sin(nkz’ — w't)e,

and (V x B') = nksin(nka' — w't)e,.

Then 9y B’ = Ww'sin(nks’ — W't e,

and (V x E') = —nksin(nkz’ — w't')e,.
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In order to preserve the canonical form of the Maxwell equations we set
OwE' = w'sin(nks’ — w't')e, = nksin(nkz’ — w't')e,

and
0yB' = W'sin(nkx’ — J't)e, = nksin(nkx’ — W't e,

This implies w’ = nk. So, the wave in the moving frame is
E' = cos(y/ 1k’ — /112kt)e, and B’ = cos(,/1tka’ — /112Kt )e..
We now derive the following formulas:

dA? = dANdA =2(B - E)dz Ady Adz A dt

and
(*dA)? = xdA A xdA = —2(B - E)dz A dy A dz A dt

and conclude that (dA)%+ (xdA)? = 0, which expresses the fundamental fact

of electromagnetic duality. We also conclude that *> = —1 which is implied
by
000 -1 0 O
000 0 -1 0
. — 000 0 0 -1
1100 0 0 O
010 0 0 O
001 0 0 O
Derivation:
dA = Eydx A dt
+E,dy A dt
+E,dz A\ dt
+B.dx Ady
+B,dy A dz
+Bydz N\ dx
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Then

dA* = dANdA
=B, E,dyNdzANdx Ndt + ExBydx ANdt ANdy A dz
+ByEydz Ndx ANdy N dt + EyBydy Adt N dz A\ dx
+B.E,de Ndy Ndz Ndt + E,B,dz Ndt \Ndx A dy
= (2B, E; +2ByE, + 2B, E,)dx Ndy Ndz N dt
=2(B-E)dz ANdy Ndz ANdt

xdA = —B,dx N dt
—Bydy A dt
—B,dz Ndt
+FE.dx N\ dy
+Ezdy N dz
+Eydz N\ dx

(*dA)? = xdA A *xdA
= —B,E,de Ndt Ndy Ndz — E,B,dy Ndz N\ dx N\ dt
—ByEydy Ndt Ndz \Ndx — EyBydz Ndx Ady A dt
—B,E.dzNdt Ndx Ndy — E,B,dx Ndy ANdz N\ dt
= (-2B,E, —2ByE, — 2B.E)dx Ndy Ndz N\ dt
=—-2(B-E)dz ANdy Ndz A dt
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We can then write 0 — (dA)? + (xdA)?
The Constancy of the Speed of Light

Let As? = At? — Az? and As? = At’? — Az'? be space-time intervals for
a light ray with respect to two inertial coordinate systems and

[ cosh(c) sinh(c)
Let A be a Lorentz transform (e.g. A = < sinh(a) cosh(a) ).

om0 (3 4)(2)
= () (o 5) (55

=l ()] 00 5)(2)
(a Am)AT<(1) _01>A<§;>

(aran) (g %) ()

So, if As? is zero in one case it equals zero in the other.

g

>
I

Mass is a Relativistic Invariant

The energy E and momentum P of a mass m traveling with uniform
velocity v are given by

2
EF=—7"-— and P= 22—
\1-v2/c? V1-v2/c?
1 v 12/ 1
1—v?/c? 1—v2/c2 = 1-v?/c?2

2.2 2,2
Then 132‘3/02 — 1Tv2”/02 =m?c® and (E/c)? — P2 = m?c?

[ cosh(a) sinh(a)
Let A be a Lorentz transform (e.g. A = < sinh(a) cosh(a) ).

m262:<El/C P/)((l) _01><E;/,c>
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e (5 (3 3)(%)
e b (%)
= ( B/ P)AT<(1) _01>A<EI£C>
(e ) (5 S ) ()

Relativistic Kinetic energy

— ch
V1-v2/c?
uniform velocity. As a body approaches the speed of light, the kinetic energy
approaches infinity but the mass remains the rest mass.

— mc? where m is the rest mass of a body and v is its
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Text is available under the Creative Commons Attribution-ShareAlike
License (https://creativecommons.org/licenses/by-sa/4.0/)
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