Quaternion Space-time (Part 3):

Quaternion Electroweak Interactions

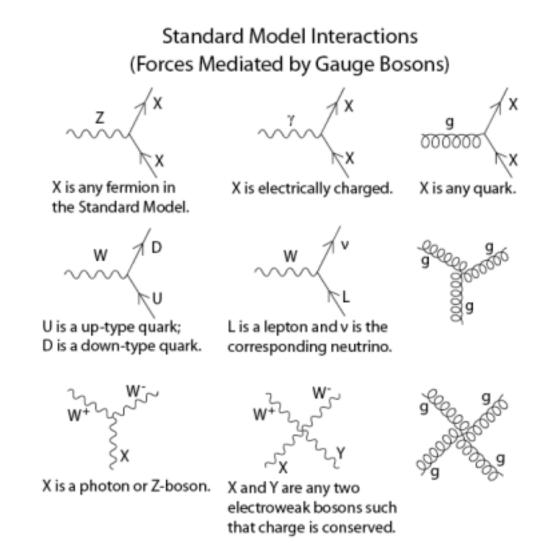


Image Source: $http: //en.wikipedia.org/wiki/Standard_Model#mediaviewer/File: Standard_Model_Feynman_Diagram_vertices.png$

We can express some of these interactions as:

- (1) $W^+ \to \overline{D} + U$ where the overline represents an antiparticle.
- (2) $W^- \rightarrow D + \overline{U}$
- (3) $Z \to X + \overline{X}$
- (4) $W^+ \rightarrow e^+ + \nu_e$
- (5) $W^- \rightarrow e^- + \overline{\nu}_e$

From (2) and (5) we get neutron decay (i.e. beta decay):

From (2): $D \to U + W^-$ and from (5): $W^- \to e^- + \overline{\nu}_e$

Then $UDD \rightarrow UUD + e^- + \overline{\nu}_e$

That is, $n \to p^+ + e^- + \overline{\nu}_e$

The group which describes the symmetries of such interactions is SU(2).

$$SU(2) = \left\{ \left(\begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array} \right) : \alpha, \beta \in \mathbf{C}, |\alpha|^2 + |\beta|^2 = 1 \right\}$$

where the overline indicates complex conjugation.

$$\begin{cases} \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbf{C} \} \\ = \{ \begin{pmatrix} a+ib & -c+id \\ c+id & a-ib \end{pmatrix} : a, b, c, d \in \mathbf{R} \} \\ = \{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} ib & 0 \\ 0 & -ib \end{pmatrix} + \begin{pmatrix} 0 & -c \\ c & 0 \end{pmatrix} + \begin{pmatrix} 0 & +id \\ id & 0 \end{pmatrix} : a, b, c, d \in \mathbf{R} \} \\ = \{ a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + c \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \\ : a, b, c, d \in \mathbf{R} \}$$

Then $SU(2) = \left\{ \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbf{C}, |\alpha|^2 + |\beta|^2 = 1 \right\}$

$$= \{ a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + c \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \\ : a, b, c, d \in \mathbf{R}, a^2 + b^2 + c^2 + d^2 = 1 \}$$

And there is an isomorphism

$$\left(\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}i&0\\0&-i\end{array}\right),\left(\begin{array}{cc}0&-1\\1&0\end{array}\right),\left(\begin{array}{cc}0&i\\i&0\end{array}\right)\right)\leftrightarrow(\mathbf{1},\mathbf{i},-\mathbf{j},\mathbf{k})$$

So, we can also express SU(2) in quaternion form as

$$SU(2) \simeq \{a\mathbf{1} + b\mathbf{i} - c\mathbf{j} + d\mathbf{k} : a, b, c, d \in \mathbf{R}, a^2 + b^2 + c^2 + d^2 = 1\}.$$

The set of generators of SU(2) is $\{\mathbf{i}, -\mathbf{j}, \mathbf{k}\}$ which in the Standard Model is to be identified with the set of particles $\{W^+, W^-, Z\}$.

The multiplication table for this set of generators is

$$\begin{array}{c|c|c|c|c|c|c|c|c|} \times & i & -j & k \\ \hline i & -1 & -k & -j \\ \hline \hline -j & k & -1 & -i \\ \hline k & j & i & -1 \end{array}$$

and that for the corresponding quaternions

×	1	i	j	k
1	1	i	j	k
i	i	-1	k	—j
j	j	$-\mathbf{k}$	-1	i
k	k	j	$-\mathbf{i}$	-1

So, any group which contains $\{i, -j, k\}$ as a subset must also contain the quaternion group $\{\pm 1, \pm i, \pm j, \pm k\}$ as a subgroup.

The quaternions are associated with spatial rotations of the form

 $\mathbf{p}' = R_{(\mathbf{q},\theta)}(\mathbf{p}) = \mathbf{q}\mathbf{p}\mathbf{q}^{-1}$ where $\mathbf{p} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ is an initial vector before rotation, $\mathbf{u} = u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k}$ is an axis of rotation with $||\mathbf{u}|| = 1$, θ is an angle of rotation, and

$$\mathbf{q} = exp[\frac{\theta}{2}(u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k})] = cos\frac{\theta}{2}\mathbf{1} + (u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k})sin\frac{\theta}{2} \text{ and}$$

$$\mathbf{q}^{-1} = exp[-\frac{\theta}{2}(u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k})] = cos\frac{\theta}{2}\mathbf{1} - (u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k})sin\frac{\theta}{2}$$

define the rotation.

The Lie group SO(3) represents all spatial rotations in \mathbf{R}^3 so

$$\{R_{(\mathbf{q},\theta)}: \mathbf{q} = exp[\frac{\theta}{2}(u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k})], 0 \le \theta < 2\pi\} \simeq SO(3).$$

So, we need to clarify the relation between SU(2) and SO(3).

Recalling from above the isomorphism

$$\left(\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}i&0\\0&-i\end{array}\right),\left(\begin{array}{cc}0&-1\\1&0\end{array}\right),\left(\begin{array}{cc}0&i\\i&0\end{array}\right)\right)\leftrightarrow(\mathbf{1},\mathbf{i},-\mathbf{j},\mathbf{k})$$

which can also be written as

$$\left(\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}i&0\\0&-i\end{array}\right),\left(\begin{array}{cc}0&1\\-1&0\end{array}\right),\left(\begin{array}{cc}0&i\\i&0\end{array}\right)\right)\leftrightarrow(\mathbf{1},\mathbf{i},\mathbf{j},\mathbf{k})$$

we can define the 2-to-1 surjective homomorphism $\phi:SU(2)\to SO(3)$

by
$$\phi(A) = -\frac{1}{2} \begin{pmatrix} Tr(\mathbf{i}A\mathbf{i}A^{-1}) & Tr(\mathbf{i}A\mathbf{j}A^{-1}) & Tr(\mathbf{i}A\mathbf{k}A^{-1}) \\ Tr(\mathbf{j}A\mathbf{i}A^{-1}) & Tr(\mathbf{j}A\mathbf{j}A^{-1}) & Tr(\mathbf{j}A\mathbf{k}A^{-1}) \\ Tr(\mathbf{k}A\mathbf{i}A^{-1}) & Tr(\mathbf{k}A\mathbf{j}A^{-1}) & Tr(\mathbf{k}A\mathbf{k}A^{-1}) \end{pmatrix}$$

where, for a quaternion $\mathbf{q} = q_0 \mathbf{1} + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$, $Tr(\mathbf{q}) = q_0$.

It is evident that $\phi(A) = \phi(-A)$ so the mapping is 2-to-1. SU(2) is referred to as a *double covering* of SO(3).

By direct calculation we can show that

$$\begin{split} \phi(A) &= \phi(a\mathbf{1} + b\mathbf{i} - c\mathbf{j} + d\mathbf{k}) \\ &= - \begin{pmatrix} (c^2 + d^2) - (a^2 + b^2) & 2(ad + bc) & 2(ac - bd) \\ -2(ad - bc) & (b^2 + d^2) - (a^2 + c^2) & 2(ab + cd) \\ -2(ac + bd) & 2(cd - ab) & (c^2 + b^2) - (a^2 + d^2) \end{pmatrix} \end{split}$$

which is orthogonal and therefore in O(3). By direct calculation we can also verify that $Det(\phi(A)) = 1$ and therefore $\phi(A) \in SO(3)$.

To find the kernel, $ker(\phi) = \{A : \phi(A) = I\}$, we set

$$\phi(A) = \phi(a\mathbf{1} + b\mathbf{i} - c\mathbf{j} + d\mathbf{k}) = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

This gives us the nine equations

$$ad + bc = 0 \tag{1}$$

$$-ad + bc = 0 \tag{2}$$

$$ac - bd = 0 \tag{3}$$

$$-ac - bd = 0 \tag{4}$$

$$ab + cd = 0 \tag{5}$$

$$-ab + cd = 0 \tag{6}$$

$$(c^{2} + d^{2}) - (a^{2} + b^{2}) = -1$$
(7)

$$(b^{2} + d^{2}) - (a^{2} + c^{2}) = -1$$
(8)

$$(c^{2} + b^{2}) - (a^{2} + d^{2}) = -1$$
(9)

which has the pair of solutions $(a, b, c, d) = (\pm 1, 0, 0, 0)$.

So, by direct calculation we see that

$$\phi(\mathbf{1}) = \phi(-\mathbf{1}) = I$$
 so $Ker(\phi) = \{\mathbf{1}, -\mathbf{1}\}.$

If we identify the antipodes $A \sim -A$ in SU(2), the homomorphism becomes an isomorphism and then $SU(2)/\mathbb{Z}_2 \cong SO(3)$.

Mathematically, the unification of the electromagnetic and weak forces is given by the group $U(1) \times SU(2)$. In the Standard Model, spontaneous symmetry breaking gives rise to the three vector bosons W^{\pm} , Z and the photon γ .

$$U(1) \times SU(2) = \{ e^{it} e^{(x\mathbf{i}-y\mathbf{j}+z\mathbf{k})} : (t, x, y, z) \in \mathbf{R}^4 \}$$

So, the generators of $U(1) \times SU(2)$ are $\{i\mathbf{1}, \mathbf{i}, -\mathbf{j}, \mathbf{k}\}$ resulting in the multiplicative structure

×	i 1	i	$-\mathbf{j}$	k
i 1	-1	$i\mathbf{i}$	$-i\mathbf{j}$	$i\mathbf{k}$
i	ii	- 1	$-\mathbf{k}$	—j
—j	$-i\mathbf{j}$	k	-1	—i
k	$i\mathbf{k}$	j	i	-1

If we reverse the sign of only the spatial components $\phi : (i\mathbf{1}, \mathbf{i}, -\mathbf{j}, \mathbf{k}) \mapsto (i\mathbf{1}, -\mathbf{i}, \mathbf{j}, -\mathbf{k})$ we get the resulting structure

\times	i 1	$ -\mathbf{i} $	j	$-\mathbf{k}$
i 1	-1	$-i\mathbf{i}$	$i\mathbf{j}$	$-i\mathbf{k}$
-i	$-i\mathbf{i}$	-1	$-\mathbf{k}$	$-\mathbf{j}$
j	$i\mathbf{j}$	k	-1	$-\mathbf{i}$
$-\mathbf{k}$	$-i\mathbf{k}$	j	i	-1

We observe that ϕ it is not isomorphic since $\phi(i\mathbf{1})\phi(\mathbf{i})\phi(\mathbf{k}) = i(-\mathbf{i})(-\mathbf{k}) = -i\mathbf{j}$ and $\phi(i\mathbf{ik}) = i\phi(-\mathbf{j}) = i\mathbf{j}$ so parity (P) reversal is not invariant for the electroweak interaction. We see that parity reversal also reverses the charge $(\mathbf{i} \rightarrow -\mathbf{i}, -\mathbf{j} \rightarrow \mathbf{j}, \mathbf{k} \rightarrow -\mathbf{k})$. Z is neutral so charge reversal has no effect. So, we also have charge-parity (CP) not invariant. So, CP violation should be expected to be observed in electroweak interactions.

However, if we add time reversal, $\psi : (i\mathbf{1}, \mathbf{i}, -\mathbf{j}, \mathbf{k}) \mapsto (-i\mathbf{1}, -\mathbf{i}, \mathbf{j}, -\mathbf{k})$ restores the original structure

×	-i 1	$-\mathbf{i}$	j	$ -\mathbf{k} $
-i 1	-1	$i\mathbf{i}$	$-i\mathbf{j}$	$i\mathbf{k}$
-i	$i\mathbf{i}$	- 1	$-\mathbf{k}$	_j
j	$-i\mathbf{j}$	k	-1	-i
$-\mathbf{k}$	$i\mathbf{k}$	j	i	-1

and $\psi(i\mathbf{1})\psi(\mathbf{i})\psi(\mathbf{k}) = (-i\mathbf{1})(-\mathbf{i})(-\mathbf{k}) = i\mathbf{j}$ and $\psi(i\mathbf{ik}) = \psi(-i\mathbf{j}) = i\mathbf{j}$. This corresponds to charge-parity-time (CPT) invariance in the electroweak interaction.

Text is available under the Creative Commons Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/)