
Galaxy Rotation

Summary: There is an anomaly in galaxy rotation insofar that stars do
not appear to obey Kepler rotation in their orbits around the galactic center.
For many galaxies, beyond a fixed radius, the orbital speed is not depen-
dent on the distance from the center but approximates a constant. In the
following we assess whether the anomaly can be explained using the Kerr
metric solution and conclude that neither dark matter nor modified gravity
are required.

Galactic Rotation Rate:

It has been observed that galaxy rotation deviates from expected Kepler
rotation as in the following figure.

Let us consider a disk whose rate of rotation is not rigid but allows for
different rates depending on the distance from the center. Suppose the mass
density has a constant value ρ.

Consider the annulus of width dr and radius r. Its mass and moment
of inertia are 2πρrdr and 2πρr3dr respectively. Let ω(r) be the angular
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velocity of the disk at r. Then the total angular momentum of the disk of
total radius R is L = 2πρ

∫ R
0 ω(r)r3dr. If the density is not constant but

only depends on r then L = 2π
∫ R

0 ρ(r)ω(r)r3dr

The Kerr Metric:

The Kerr metric has been discussed in the articles Quaternion Space-
time and The Kerr Metric. It is the axially symmetric solution to the GR
field equations around a rotating gravitating body with angular momentum
J :

ds2 = (1− α/R̃)dt2 +
2αasin2θ

R̃
dtdφ− Σ

∆
dR2 − dΩ2

where c is set at 1, t is the elapsed time of a clock ’at infinity’, r is the
scalar distance, R = (r3 + α3)1/3, α = 2GM , R̃ = R2+a2cos2θ

R , a = J/M ,
Σ = R2 + a2cos2θ, ∆ = R2 − αR+ a2, and

dΩ2 = Σdθ2 + (R2 + a2 +
αa2sin2θ

R̃
)sin2θdφ2

The Symmetric Bilinear Form for the Kerr Metric

The Kerr metric can be written in bilinear form as


dt
dR
dθ
dφ


T

K


dt
dR
dθ
dφ



where K =


(1− α

R̃
) 0 0 αasin2θ

R̃
0 −Σ

∆ 0 0
0 0 −Σ 0

αasin2θ
R̃

0 0 −(R2 + a2 + αa2

R̃
sin2θ)sin2θ



which we can write as K =


A 0 0 E
0 B 0 0
0 0 C 0
E 0 0 D


The eigenvalues for K are λ =

(A+D)±
√

(A−D)2+4E2

2 ,B,C.
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Then the diagonal bilinear form for the Kerr metric is

QTKQ =


(A+D)+

√
(A−D)2+4E2

2 0 0 0
0 B 0 0
0 0 C 0

0 0 0
(A+D)−

√
(A−D)2+4E2
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where Q is orthogonal since K is real symmetric

and where


dt
dR
dθ
dφ

 = Q


dt′

dR′

dθ′

dφ′

 is the orthogonal coordinate trans-

formation between the two sets of coordinates.

So, the Kerr metric in canonical (diagonal) form is

ds2 =
(A+D)+

√
(A−D)2+4E2

2 dt′2−|B|dR′2−|C|dθ′2−
∣∣∣∣ (A+D)−

√
(A−D)2+4E2

2

∣∣∣∣ dφ′2.

For a unit mass in orbit around the central gravitating body,

1 =
(A+D)+

√
(A−D)2+4E2

2 E2
rg−|B|P 2

R′−|C|P 2
θ′−

∣∣∣∣ (A+D)−
√

(A−D)2+4E2

2

∣∣∣∣P 2
φ′ .

where Erg is the energy. The canonical coordinates are not static but
rather the frame rotates and the rate of rotation is dependent on R, a, and
α (such dependence produces the spiral arms). For a rotating galaxy a = L
as in the disk discussed above. We will now assume that motion is circular
in the equatorial plane so the above equation becomes

1 =
(A+D)+

√
(A−D)2+4E2

2 E2
rg −

∣∣∣∣ (A+D)−
√

(A−D)2+4E2

2

∣∣∣∣P 2
φ′ .

We suggest the hypothesis that with respect to the canonical coordinates,
the motion is actually Kepler motion identical to the case where

1 = (1− α

R
)E2

rg −R2sin2P 2
φ

but does not appear so because of the rotation of the canonical coordinate
frame itself.** The second to last relation is between R,a, and α. The latter
α = 2GM so the relation in each is between R, a = 2π

∫ R
0 ρ(r)ω(r)r3dr,

and M = 2π
∫ R

0 ρ(r)rdr.* We can expect the observed rotation to deviate
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from the computed Kepler rotation by an amount equal to a rotation in the
canonical coordinate frame itself where dφ/dτ = 1

κ

[
αa
R

]
and where

κ = Det

(
gtt gtφ
gtφ gφφ

)

Conservation of Total Galactic Angular Momentum:

Let R∞ be large enough so that ρ(r)→ 0 as r → R∞. Then the conserva-
tion of galactic angular momentum implies 2π

∫ R∞
0 ρ(r)ω(r)r3dr is constant.

If the mass distribution shifts outward or inward toward the center, the dis-
tribution of angular velocity ω(r) must shift accordingly.

Suppose that initially a galaxy displays something approximating Kepler
motion. That is, suppose ω(r) increases as r → 0. Then, the result of mass
falling inward, perhaps due to the action of a black hole (defined to be an
object whose mass is compressed within 1.5 Schwarzschild radii), must be a
shift outward in the ω distribution. Over time, this would result in galac-
tic motion appearing less Kepler with respect to the static Kerr coordinates.

Footnote *:

Both ρ(r) and ω(r) might also depend on φ but we are here using
ρ(r) =

∫ 2π
0 ρ(r, φ)dφ and ω(r) =

∫ 2π
0 ω(r, φ)dφ.

Footnote **:

In traditional black hole astrophysics the upper bound for the central an-
gular momentum a ≤ GM = α/2. In the article The Schwarzschild Metric
we show that by viewing space around a black hole as having negative cur-
vature we can remove the coordinate singularities leaving only the physical
singularity at the center, assuming the central mass is in fact compressed to
a single point. It is more likely to be compressed to some maximum attain-
able density. See also The Kerr Metric. That implies there is no inherent
upper bound for a. So, we can apply the Kerr metric to a large structure
such as a galaxy.

Let u be a 4-vector and −ε = gttu
t + gtφu

φ and l = gtφu
t + gφφu

φ.
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We can solve for uφ = dφ/dτ = 1
κ

[
(1− α

R)l + αa
R ε
]

where

κ = Det

(
gtt gtφ
gtφ gφφ

)

For the static Kerr coordinates, a mass with no initial angular momentum
and radial motion only, can acquire angular velocity. Setting initial l = 0 and
ε = 1 we have dφ/dτ = 1

κ

[
αa
R

]
. W.r.t. canonical coordinates, −ε′ = gt′t′u

t′

and l′ = gφ′φ′u
φ′ so dφ′/dτ = 0. Therefore, the canonical frame is rotating

relative to the static frame.

********************************

Text is available under the Creative Commons Attribution-ShareAlike
License (https://creativecommons.org/licenses/by-sa/4.0/)
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