Galaxy Rotation

Summary: There is an anomaly in galaxy rotation insofar that stars do
not appear to obey Kepler rotation in their orbits around the galactic center.
For many galaxies, beyond a fixed radius, the orbital speed is not depen-
dent on the distance from the center but approximates a constant. In the
following we assess whether the anomaly can be explained using the Kerr
metric solution and conclude that neither dark matter nor modified gravity
are required.

Galactic Rotation Rate:

It has been observed that galaxy rotation deviates from expected Kepler
rotation as in the following figure.
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Let us consider a disk whose rate of rotation is not rigid but allows for
different rates depending on the distance from the center. Suppose the mass
density has a constant value p.

Consider the annulus of width dr and radius r. Its mass and moment
of inertia are 2mprdr and 2mpr3dr respectively. Let w(r) be the angular



velocity of the disk at r. Then the total angular momentum of the disk of
total radius R is L = 2mp fo 3dr If the density is not constant but

only depends on r then L = 27 fo Y (r)r3dr
The Kerr Metric:

The Kerr metric has been discussed in the articles Quaternion Space-
time and The Kerr Metric. It is the axially symmetric solution to the GR
field equations around a rotating gravitating body with angular momentum
J:
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where ¢ is set at 1, ¢ is the elapsed time of a clock ’at infinity’, r is the
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scalar distance, R = (r® + o)Y/3, o = 2GM, R = W, a=J/M,
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The Symmetric Bilinear Form for the Kerr Metric

ar \" dt
The Kerr metric can be written in bilinear form as ng K ng
do de
(1 _a ) 0 0 aasin?6
where K = 0 ! _% 0 g
- 0 0o =X 0
aasin®0 2 2 aa? ;2 )
z 0 —(R* + 7 0)sin*6

0
A
. . 0
which we can write as K = 0
FE

oo o

E
0
0
D

o Qoo

(A+D)++/( 2Aqa )2+4E2 B.C.

The eigenvalues for K are \ =



Then the diagonal bilinear form for the Kerr metric is
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formation between the two sets of coordinates.

So, the Kerr metric in canonical (diagonal) form is

ds? — (A+D)+\/(2A—D)2+4E2 At —| B|dR?—|C|do™ (A+D)—,/(2A—D)2+4E2

For a unit mass in orbit around the central gravitating body,
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where FE., is the energy. The canonical coordinates are not static but
rather the frame rotates and the rate of rotation is dependent on R, a, and
a (such dependence produces the spiral arms). For a rotating galaxy a = L
as in the disk discussed above. We will now assume that motion is circular
in the equatorial plane so the above equation becomes
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We suggest the hypothesis that with respect to the canonical coordinates,
the motion is actually Kepler motion identical to the case where
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but does not appear so because of the rotation of the canonical coordinate
frame itself.** The second to last relation is between R,a, and «. The latter
a = 2GM so the relation in each is between R, a = 27 fOR p(r)w(r)ridr,

and M = 27 fOR p(r)rdr.* We can expect the observed rotation to deviate
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from the computed Kepler rotation by an amount equal to a rotation in the

canonical coordinate frame itself where d¢/dr = 1 [9%] and where
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Conservation of Total Galactic Angular Momentum:

Let R, be large enough so that p(r) — 0 asr — Rs. Then the conserva-
tion of galactic angular momentum implies 27 fOR‘X’ p(r)w(r)r3dr is constant.
If the mass distribution shifts outward or inward toward the center, the dis-
tribution of angular velocity w(r) must shift accordingly.

Suppose that initially a galaxy displays something approximating Kepler
motion. That is, suppose w(r) increases as r — 0. Then, the result of mass
falling inward, perhaps due to the action of a black hole (defined to be an
object whose mass is compressed within 1.5 Schwarzschild radii), must be a
shift outward in the w distribution. Over time, this would result in galac-
tic motion appearing less Kepler with respect to the static Kerr coordinates.

Footnote *:

Both p(r) and w(r) might also depend on ¢ but we are here using
p(r) = JZ7 p(r,¢)d¢ and w(r) = [3" w(r, p)d¢.

Footnote **:

In traditional black hole astrophysics the upper bound for the central an-
gular momentum a < GM = «/2. In the article The Schwarzschild Metric
we show that by viewing space around a black hole as having negative cur-
vature we can remove the coordinate singularities leaving only the physical
singularity at the center, assuming the central mass is in fact compressed to
a single point. It is more likely to be compressed to some maximum attain-
able density. See also The Kerr Metric. That implies there is no inherent
upper bound for a. So, we can apply the Kerr metric to a large structure
such as a galaxy.

Let u be a 4-vector and —e = gyut + gt¢u¢ and [ = gt¢>ut + g¢¢u¢.



We can solve for u® = d¢/dr = L [(1 — %)l + %e] where
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For the static Kerr coordinates, a mass with no initial angular momentum
and radial motion only, can acquire angular velocity. Setting initial [ = 0 and
e =1 we have d¢/dr = 1 [22]. W.r.t. canonical coordinates, —¢ = i

and I! = g¢/¢/u¢/ so d¢'/dT = 0. Therefore, the canonical frame is rotating
relative to the static frame.
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