
Quaternion Space-time (Part 4):

Summary: Here we discuss gluon symmetry and show that a broken
version of the SU(3) symmetry which we can call ≈ SU(3) allowed the emer-
gence of neutrons. We also introduce a mechanism for the nuclear strong
force not dependent on pion exchange. We also show that an expanded
symmetry SU(4) accounts nicely for hypercharge.

Gell-Mann Matrices

The Gell-Mann matrices are defined as follows:

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2


Their multiplication table is:

× λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
λ1 Ia iλ3 −iλ2 ∗ ∗ ∗ ∗ λ1/

√
3

λ2 −iλ3 Ia iλ1 ∗ ∗ ∗ ∗ λ2/
√

3

λ3 iλ2 −iλ1 Ia ∗ ∗ ∗ ∗ λ3/
√

3

λ4 ∗ ∗ ∗ Ib ∗ ∗ ∗ ∗
λ5 ∗ ∗ ∗ ∗ Ib ∗ ∗ ∗
λ6 ∗ ∗ ∗ ∗ ∗ Ic ∗ ∗
λ7 ∗ ∗ ∗ ∗ ∗ ∗ Ic ∗
λ8 λ1/

√
3 λ2/

√
3 λ3/

√
3 ∗ ∗ ∗ ∗ α

where Ia =

 1 0 0
0 1 0
0 0 0

, Ib =

 1 0 0
0 0 0
0 0 1

, Ic =

 0 0 0
0 1 0
0 0 1


The products indicated by ’∗’ are those which cannot be expressed as a

multiple (real or imaginary) of one of the λs.
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Using only the block containing {λ1, λ2, λ3} and including Ia we have
the multiplication table

× Ia λ1 λ2 λ3
Ia Ia λ1 λ2 λ3
λ1 λ1 Ia iλ3 −iλ2
λ2 λ2 −iλ3 Ia iλ1
λ3 λ3 iλ2 −iλ1 Ia

We recall the multiplication table for the Pauli matrices:

× I σ1 σ2 σ3
I I σ1 σ2 σ3
σ1 σ1 I iσ3 −iσ2
σ2 σ2 −iσ3 I iσ1
σ3 σ3 iσ2 −iσ1 I

So, there is an isomorphism (Ia, λ1, λ2, λ3)↔ (I, σ1, σ2, σ3)

and since (1, i, j,k)↔ (I,−iσ1,−iσ2,−iσ3)

we also have the isomorphism(s)

(1, i, j,k)↔ (Ia,−iλ1,−iλ2,−iλ3) and (1, ii, ij, ik)↔ (Ia, λ1, λ2, λ3)

We can therefore write

× Ia λ1 λ2 λ3
Ia Ia λ1 λ2 λ3
λ1 λ1 1 −k j

λ2 λ2 k 1 −i
λ3 λ3 −j i 1

It is then clear that any group which contains the λs as a subset must
also contain the quaternion group {±1,±i,±j,±k} as a subgroup.

Quantum Chromodynamics (QCD) posits the existence of six color states
for quarks: red (r), anti-red (r), blue (b), anti-blue (b), green (g) and anti-
green (g).

We can form color-anti-color pairs as follows:
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× r b g

r rr rb rg

b br bb bg

g gr gb gg

Gluons do not exist in singlet states but in eight states of superposition
such as:

1√
2
(rb+ br) ∼ λ1, i√

2
(−rb+ br) ∼ λ2, 1√

2
(rr − bb) ∼ λ3

1√
2
(rg + gr) ∼ λ4, i√

2
(−rg + gr) ∼ λ5, 1√

2
(bg + gb) ∼ λ6

i√
2
(−bg + gb) ∼ λ7, 1√

6
(rr + bb− 2gg) ∼ λ8

where 1√
2

is a normalizing factor.

Notice that the product λ8λ8 = α = −1
3Ia + 2

3Ib + 2
3Ic has the structure

of the proton. Ia, Ib, Ic exist in mutually exclusive color states where Ia
plays the role of the down quark (d) with charge -1/3 and Ib and Ic play the
role of the up quarks (uu) each with charge +2/3. Ia is in the superimposed
color state 1√

2
(rr+bb), Ib the state 1√

2
(rr+gg) and Ic the state 1√

2
(bb+gg).

We transform λ8 by rr+bb−2gg → rr+bb+i
√

2gg. This is equivalent to 1 0 0
0 1 0
0 0 −1/2

λ28 = 2
3Ia−

1
3Ib−

1
3Ic which has the form of a neutron.

We set λ′28 = 2
3Ia −

1
3Ib −

1
3Ic = 1

3

 1 0 0
0 1 0
0 0 −2

.

Similarly to the proton, Ia, Ib, Ic exist in mutually exclusive color states
where Ia plays the role of the up quark (u) with charge 2/3 and Ib and Ic
play the role of the down quarks (dd) each with charge -1/3. As above, Ia
is in the superimposed color state 1√

2
(rr+ bb), Ib the state 1√

2
(rr+ gg) and

Ic the state 1√
2
(bb+ gg).

So,

 1 0 0
0 1 0
0 0 −1/2

 p = n and

 1 0 0
0 1 0
0 0 −2

n = p
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