Quaternion Space-time (Part 4):

Summary: Here we discuss gluon symmetry and show that a broken version of the SU(3) symmetry which we can call $\approx SU(3)$ allowed the emergence of neutrons. We also introduce a mechanism for the nuclear strong force not dependent on pion exchange. We also show that an expanded symmetry SU(4) accounts nicely for hypercharge.

Gell-Mann Matrices

The Gell-Mann matrices are defined as follows:

$$\begin{aligned} \lambda_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \lambda_4 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ \lambda_7 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \end{aligned}$$

Their multiplication table is:

×	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8		
λ_1	I_a	$i\lambda_3$	$-i\lambda_2$	*	*	*	*	$\lambda_1/\sqrt{3}$	_	
λ_2	$-i\lambda_3$	I_a	$i\lambda_1$	*	*	*	*	$\lambda_2/\sqrt{3}$		
λ_3	$i\lambda_2$	$-i\lambda_1$	I_a	*	*	*	*	$\lambda_3/\sqrt{3}$	_	
λ_4	*	*	*	I_b	*	*	*	*	_	
λ_5	*	*	*	*	I_b	*	*	*	_	
λ_6	*	*	*	*	*	I_c	*	*	_	
λ_7	*	*	*	*	*	*	I_c	*	_	
λ_8	$\lambda_1/\sqrt{3}$	$\lambda_2/\sqrt{3}$	$\lambda_3/\sqrt{3}$	*	*	*	*	α		
where $I_a = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $I_b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $I_c = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$										

The products indicated by '*' are those which cannot be expressed as a multiple (real or imaginary) of one of the λ s.

Using only the block containing $\{\lambda_1, \lambda_2, \lambda_3\}$ and including I_a we have the multiplication table

\times	I_a	λ_1	λ_2	λ_3
I_a	I_a	λ_1	λ_2	λ_3
λ_1	λ_1	I_a	$i\lambda_3$	$-i\lambda_2$
λ_2	λ_2	$-i\lambda_3$	I_a	$i\lambda_1$
λ_3	λ_3	$i\lambda_2$	$-i\lambda_1$	I_a

We recall the multiplication table for the Pauli matrices:

\times	Ι	σ_1	σ_2	σ_3
Ι	Ι	σ_1	σ_2	σ_3
σ_1	σ_1	Ι	$i\sigma_3$	$-i\sigma_2$
σ_2	σ_2	$-i\sigma_3$	Ι	$i\sigma_1$
σ_3	σ_3	$i\sigma_2$	$-i\sigma_1$	Ι

So, there is an isomorphism $(I_a, \lambda_1, \lambda_2, \lambda_3) \leftrightarrow (I, \sigma_1, \sigma_2, \sigma_3)$

and since $(\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}) \leftrightarrow (I, -i\sigma_1, -i\sigma_2, -i\sigma_3)$

we also have the isomorphism(s)

$$(\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}) \leftrightarrow (I_a, -i\lambda_1, -i\lambda_2, -i\lambda_3) \text{ and } (\mathbf{1}, i\mathbf{i}, i\mathbf{j}, i\mathbf{k}) \leftrightarrow (I_a, \lambda_1, \lambda_2, \lambda_3)$$

We can therefore write

\times	I_a	λ_1	λ_2	λ_3
I_a	I_a	λ_1	λ_2	λ_3
λ_1	λ_1	1	$-\mathbf{k}$	j
λ_2	λ_2	k	1	$-\mathbf{i}$
λ_3	λ_3	—j	i	1

It is then clear that any group which contains the λ s as a subset must also contain the quaternion group $\{\pm 1, \pm i, \pm j, \pm k\}$ as a subgroup.

Quantum Chromodynamics (QCD) posits the existence of six color states for quarks: red (r), anti-red (\bar{r}) , blue (b), anti-blue (\bar{b}) , green (g) and antigreen (\bar{g}) .

We can form color-anti-color pairs as follows:

×	\overline{r}	\overline{b}	\overline{g}
r	$r\overline{r}$	$r\overline{b}$	$r\overline{g}$
b	$b\overline{r}$	$b\overline{b}$	$b\overline{g}$
g	$g\overline{r}$	$g\overline{b}$	$g\overline{g}$

Gluons do not exist in singlet states but in eight states of superposition such as:

$$\frac{1}{\sqrt{2}}(r\overline{b}+b\overline{r})\sim\lambda_1,\ \frac{i}{\sqrt{2}}(-r\overline{b}+b\overline{r})\sim\lambda_2,\ \frac{1}{\sqrt{2}}(r\overline{r}-b\overline{b})\sim\lambda_3$$
$$\frac{1}{\sqrt{2}}(r\overline{g}+g\overline{r})\sim\lambda_4,\ \frac{i}{\sqrt{2}}(-r\overline{g}+g\overline{r})\sim\lambda_5,\ \frac{1}{\sqrt{2}}(b\overline{g}+g\overline{b})\sim\lambda_6$$
$$\frac{i}{\sqrt{2}}(-b\overline{g}+g\overline{b})\sim\lambda_7,\ \frac{1}{\sqrt{6}}(r\overline{r}+b\overline{b}-2g\overline{g})\sim\lambda_8$$

where $\frac{1}{\sqrt{2}}$ is a normalizing factor.

Notice that the product $\lambda_8\lambda_8 = \alpha = -\frac{1}{3}I_a + \frac{2}{3}I_b + \frac{2}{3}I_c$ has the structure of the proton. I_a, I_b, I_c exist in mutually exclusive color states where I_a plays the role of the down quark (d) with charge -1/3 and I_b and I_c play the role of the up quarks (uu) each with charge +2/3. I_a is in the superimposed color state $\frac{1}{\sqrt{2}}(r\overline{r}+b\overline{b}), I_b$ the state $\frac{1}{\sqrt{2}}(r\overline{r}+g\overline{g})$ and I_c the state $\frac{1}{\sqrt{2}}(b\overline{b}+g\overline{g})$.

We transform λ_8 by $r\bar{r} + b\bar{b} - 2g\bar{g} \rightarrow r\bar{r} + b\bar{b} + i\sqrt{2}g\bar{g}$. This is equivalent to

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1/2 \end{pmatrix} \lambda_8^2 = \frac{2}{3}I_a - \frac{1}{3}I_b - \frac{1}{3}I_c \text{ which has the form of a neutron.}$ We set $\lambda_8'^2 = \frac{2}{3}I_a - \frac{1}{3}I_b - \frac{1}{3}I_c = \frac{1}{3}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$

Similarly to the proton, I_a , I_b , I_c exist in mutually exclusive color states where I_a plays the role of the up quark (u) with charge 2/3 and I_b and I_c play the role of the down quarks (dd) each with charge -1/3. As above, I_a is in the superimposed color state $\frac{1}{\sqrt{2}}(r\bar{r}+b\bar{b})$, I_b the state $\frac{1}{\sqrt{2}}(r\bar{r}+g\bar{g})$ and I_c the state $\frac{1}{\sqrt{2}}(b\bar{b}+g\bar{g})$.

So,
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1/2 \end{pmatrix} p = n$$
 and $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} n = p$

Text is available under the Creative Commons Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/)