
The Hubble Parameter

The cosmological equations are:

8πGρ

3
=

k

a2
+

(
ȧ
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In equation (1) and (2), k = −1, 0, 1 corresponding to the tri-curvature
of negative, flat and positive. The Hubble parameter H = ȧ

a = 1
tH

. The

units of the Hubble parameter are in s−1 allowing us to define Hubble time
(now) as tH = H−1

0 so H0 = t−1
H is true by definition.

Models based on the assumption that p = 0 and ρa3 = constant for the
three curvature values were developed by Friedman in the 1920s.*

Setting A = 8πGρa3

3 = constant within each solution, the three Friedman
solutions are:

• For k = 0: a = a0t
2/3 for 0 < t. This gives ȧ = 2

3a0t
−1/3 and H = 2

3t and
4a3

0 = 9A. Note that H → 0 as t→∞

• For k = +1: t = 1
2A(θ − sinθ) and a = 1

2A(1 − cosθ) for 0 < θ < 2π.

Then ȧ = sinθ
1−cosθ and H = sinθ

1
2
A(1−cosθ)2

• For k = −1: t = 1
2A(sinhη − η) and a = 1

2A(coshη − 1) for 0 < η. Then

ȧ = sinhη
coshη−1 and H = sinhη

1
2
A(coshη−1)2

. Note that H → 0 as η →∞.

We can estimate H0 empirically and as we have seen we can define the
Hubble time tH = H−1

0 . We would like to know how the actual time t > 0
compares to H−1.

For k = 0: t/H−1 = 2/3.
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For k = +1: t/H−1 = sinθ(θ−sinθ)
(1−cosθ)2 < 2/3 and diverges ↓ −∞ as θ → 2π

For k = −1: t/H−1 = sinhη(sinhη−η)
(coshη−1)2

> 2/3 and converges ↑ 1 as η →∞.

So, only for k = −1 is H−1 eventually a good approximation for t.

We can see from the graph above that for ΩΛ = 0 and ρ = .04ρc,
t/tH ≈ .96 and therefore t = 13.8Gyr. This assumes tH ≈ 14.4Gyr.

t/tH ≈ .96 corresponds to η ≈ 5.0. We can then calculate

A = 2t/(sinhη − η)

We get A = 2(13.8× 109y)/69.2 = 1.26× 1016s. Consequently,

a =
1

2
A(coshη − 1) = 4.61× 1017s

Using the value H0 = 2.2× 10−18s−1 we can calculate

ȧ = aH0 = (4.6× 1017s)(2.2× 10−18s−1) = 1.0

This is in close agreement with ȧ = sinhη
coshη−1 = 1.01 for η = 5.
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The Deceleration Parameter

Ḣ =
aä− ȧ2

a2
=
ä

a
− ȧ2

a2
=
ȧ2

a2
(
äa

ȧ2
− 1) = −H2(1 + q)

where we define the deceleration parameter q ≡ − äa
ȧ2

. In the hyperbolic

space under consideration, q = 1
2A

(coshη−1)2

sinh2η
↓ 0 as η →∞.

For small q, Ḣ
H ≈ −

ȧ
a

The CMB

In the Cosmic Microwave Background we observe small variations in the
temperature. The Universe, as a 3-pseudosphere, has the spatial metric

dσ2 = dχ2 + sinh2χ(dθ2 + sin2θdφ2)

It can be expected to have variations in its expansion rate along different
directions, the greatest being in the χ direction. This will result in the
wavelength of photons being stretched more in that direction lowering the
temperature of the black body radiation. The arrow in the figure below
shows the χ gradient accompanied by decreasing temperature in the CMB.

Red Shift

We define red shift z as z = λ0
λe
− 1 where λ0 is an observed wavelength

and λe is the emitted wave length.

Proper red shift can occur as a Doppler effect due to the motion of an
object in space whereas cosmological red shift is due to the expansion of the
Universe.
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We can interpret cosmological red shift in either of two fundamentally
equivalent ways. It can be viewed as either due to the expansion of space or
the dilation of time. We will assume k = −1.

In the former, we set a = 1
2A(coshη − 1) and assume z + 1 = a0

a1
where

a0 is the scale factor of the Universe now and a1 is that at some time in the
past. Then z + 1 = coshη0−1

coshη1−1 where η0 and η1 correspond to now and the
designated time in the past.

In the latter case, dt
dη = 1

2A(coshη− 1). Then dt0/dη0
dt1/dη1

= coshη0−1
coshη1−1 = z+ 1.

The Tempo of Time

The expansion parameter η =
∫
dt
a and consequently

η0 =

∫ t0

0

dt

a
=

∫ η(t0)

0
dη

The following graph shows the relation between t and η.

We can see that the tempo of time is near zero when η ≈ 0 and speeds
up with increasing η.

We can calculate ȧ = da
dη

dη
dt . Now, da

dη = 1
2Asinh(η) and from η =

∫
dt
a

we have dη
dt = 1

a . Consequently, ȧ = sinhη
coshη−1 (as calculated above).

The following graph shows ȧ = a′(t), a/t, a, and t all w.r.t. η.

4



Galactic Distance and Recession Velocity
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Suppose a photon leaves a distant galaxy at time t1 and arrives at an
observer at time t0, the distance now of the distant galaxy is

Dnow = a(t0)

∫ t0

t1

dt

a(t)
= a(t0)[η(t0)− η(t1)] = a(t0)[η0 − η1]

Then

Ḋnow = ȧ(t0)[η(t0)− η(t1)] + a(t0)[
dη

dt0
− dη

dt1

dt1
dt0

]

and upon substitution we get

Ḋnow = ȧ(t0)[η(t0)− η(t1)] + a(t0)[
2

A(coshη0 − 1)
− 2

A(coshη0 − 1)
]

So v = ȧ(t0)[η0−η1] is the hypothesized current recession velocity but cannot
be observed until emitted photons arrive with red shift

z =
cosh(η0 + η0 − η1)− 1

cosh(η0)− 1
− 1

where 2η0 − η1 is the value of η at time of arrival.

Since η0 − (η0 − η1)− [η1 − (η0 − η1)] = η0 − η1 we have

the recession velocity now v0 = sinhη0
coshη0−1(η0 − η1) and

the recession velocity at time of emission v1 = sinhη1
coshη1−1(η0 − η1).
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The Hubble law states that

vnow = DnowHnow

= a(t0)(η0 − η1)Hnow = a(t0)(η0 − η1) ȧ(t0)
a(t0) = ȧ(t0)(η0 − η1).

Example: Suppose we observe a galaxy with z = 8.0. Assume η0 = 5.0,
t0 = 13.8Gyr, and a(t0) = 14.2× 109.

Then cosh5.0−1
coshη1−1 = 9.0. We solve for η1 = 2.9 and determine that Dnow =

a(t0)(η0−η1) = 14.2(5.0−2.9)×109 = 29.8×109lyr = 29.8Glyr. A current
red shift of z = 8.0 corresponds to a recession velocity of 2.3c when the light
was emitted and 2.1c now.

The duration of light travel is τ = t0 − t1 where t0
t1

= sinhη0−η0
sinhη1−η1 =

sinh5.0−5.0
sinh2.9−2.9 = 11.2.

Then τ = t0 − t0( t1t0 ) = t0 − t0
11.2 = 12.6Gyr.**

We can graph the relationship between red shift and lookback time based
on conformal time:

We may consider the observed distance to be the lookback time (τ) mul-
tiplied by the speed of light. The observed distance is not the same as Dnow,
the current distance, since the Universe has expanded since light began its
journey from the observed object.
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The above graph shows the relationship of red shift and Dnow both de-
pendent on conformal time η. The scale on the left is in redshift units but
also Billion Light Years. Corresponding to z = 1 we have Dnow = 9.19Glyr
and corresponding to z = 4 we have Dnow = 20.75Glyr. In each case
the two values have a common η value. Not show on the graph is that
Dnow → 71Glyr as z → ∞. We can also parameterize the two graphs de-
pendent on conformal time η:

Note that for any 0 < η1 < η0, τ < t0 (the current age of the Universe)
and as η1 → 0, τ → t0. This eliminates the so-called horizon problem. No

8



matter how far apart two entities are now, by taking a as small as we like,
the two entities can be made arbitrarily close.

We should also note the following. We showed above that η0−η1 remains
contant as the Universe expands. As η0 increases new objects will come into
view as they will appear to emerge from the hyper-surface of last scattering.

The above calculation shows that the light from such an object has time
within the current age of the Universe to reach us even though it is receding
faster than the speed of light. Using the above method (η1 = 4.3) we can
show that Dnow for z = 1 is about 9.9Glyr. That is, galaxies with z = 1 have
receded from us out to that distance though their light has taken only 7.0Gyr
to reach us. Dnow for z = 1 was the Hubble distance (D = ctH) 7.0Gyr ago.
Galaxies on the Hubble sphere (Dnow = ctH) are now receding from us at
about 1.0c. Light emitted now will reach us in 14.4Gyr (= tH)with a red

shift of z = cosh(5.7)−1
cosh(5.0)−1 − 1 ≈ 1.0.

Since ȧ(t0) ↓ 1 in the case of negative cosmological curvature we have as
a limiting case v = η0 − η1.

Note that between our galaxy and some other, t0−t1 is not constant as η
increases but x+(η0−η1)−x = η0−η1 = constant. So, the red shift of a dis-

tant galaxy will converge to z = limx→∞
cosh(x+η0−η1)−1

cosh(x)−1 − 1 = eη0−η1 − 1 as
the Hubble parameter→ 0 while the recession velocity tends to v = η0−η1.

Null Paths

For the following we use the generalized Robertson-Walker coordinates.

ds2 = dt2 −
[

dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

]
Let γ = γ(s) be the path of a photon through space-time parameterized by
space-time arclength s. The scale factor is assumed to be a = 1.

Then
dγ

ds
=
dt

ds
∂t +

dr

ds
∂r +

dθ

ds
∂θ +

dφ

ds
∂φ

Now, 〈∂t, ∂t〉 = 1, 〈∂r, ∂r〉 = 1
1−kr2 , 〈∂θ, ∂θ〉 = r2, and 〈∂φ, ∂φ〉 = r2sin2θ
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Then

0 = 〈dγ
ds
,
dγ

ds
〉 = dt2 − dr2

1− kr2
− r2dθ2 − r2sin2θdφ2

We are interested in paths terminating along a single line of sight so

dθ = dφ = 0

Then

dt2 =
dr2

1− kr2

We have three cases:
For k = 0, r = ρ. For k = +1, r = sinβ. For k = −1, r = sinhχ

Then for the three cases, dt = dρ, dt = dβ, and dt = dχ.

For flat space we get a cone as in special relativity. The other two cases
are not cone-like but curved.

Assuming β = χ = 0 when ρ = 0 we can say ρ = β = χ. Then
sinβ < ρ < sinhχ and we have the following picture:

The above graph shows world-lines in co-moving co-ordinates. Also
shown are the null paths followed by photons in the tri-curvature.

Red= sinhχ; Black= ρ; and Blue= sinβ

The above picture is scalable so for a specific scale factor a we have
asinβ < aρ < asinhχ.
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We note above that r = sinhχ and so dr
dt = coshχdχdt > 1 for χ > 0. Then

the speed of light w.r.t. Robertson-Walker time is greater than 1. This is
not unusual in Relativity Theory but it does not indicate that when c is
measured locally it is different from its invariant value.

Consider a distant galaxy with cosmological redshift z. We let our unit
of distance to be the wavelength of a specific spectral line of Kr-86 and our
unit of time to be based on the frequency of a specific spectral line of Cs-133.
Then our unit of length is λKr and our unit of time is 1/νCs. Chose m,n
s.t. mλKr

n(1/νCs) = c. Then m
n λKrνCs = c. We shall assume this definition of

the speed of light can be transported backwards in time to other galaxies.

Due to the expansion of the Universe we have z+ 1 = λ
λ′ = ν′

ν where the
primes represent the values in the distant galaxy.

Then λν = λ′ν ′ and consequently, m
n λKrνCs = m

n λ
′
Krν

′
Cs = c. This im-

plies the speed of light is measured the same (w.r.t. proper time τ) at the
distant galaxy. It follows that dr

dτ = dr
dt

dt
dτ = 1. Then dt

dτ = 1
coshχ .

A somewhat more elegant proof without the assumption made above is
as follows:

The metric ds2 = dR2 − R2[dχ2 + sinh2χ(dθ2 + sin2θdφ2)] describes a
four dimensional flat space. It is similar to the Robertson-Walker metric
ds2 = dt2−R2[dχ2 + sinh2χ(dθ2 + sin2θdφ2)] which describes a curved four
dimensional space-time. The difference is dR is replaced by dt in the first
expression.

Define the Special Relativity coordinates of an observer at χ to be:

T = Rcoshχ (4)

X = Rsinhχcosθ (5)

Y = Rsinhχsinθcosφ (6)

Z = Rsinhχsinθsinφ (7)

Then R2 = T 2 −X2 − Y 2 − Z2. It has the metric of the above four dimen-
sional flat space.

The above quadratic written as
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
T
X
Y
Z


T 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




T
X
Y
Z



is invariant under every Lorentz transformation Λ
T
X
Y
Z


T

ΛT


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

Λ


T
X
Y
Z

 = R2

with R2 as an invariant. Furthermore,

0 = dT ′2 − dX ′2 − dY ′2 − dZ ′2

=

Λ


dT
dX
dY
dZ



T 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

Λ


dT
dX
dY
dZ



=


dT
dX
dY
dZ


T

ΛT


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

Λ


dT
dX
dY
dZ



=


dT
dX
dY
dZ


T 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




dT
dX
dY
dZ


= dT 2 − dX2 − dY 2 − dZ2 = 0

So, the speed of light will also be invariant in this space-time. So, all
observers see the speed of light

c =
dX2 + dY 2 + dZ2

dT 2
= 1

.
How Big Is the Observable Universe?
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For hyperbolic space (k = −1) the co-moving metric

dχ2 + sinh2χ(dθ2 + sin2θdφ2)

is unbounded (for all t > 0) since there is no upper bound for χ. However,
the maximum value for Dnow is Dnow = a(t0)(η0−0) = 14.2(5.0−0)×109 =
71.0× 109lyr = 71.0Glyr.

Consider the foliation of co-moving spaces indexed by the scale factor a.
The world-line of an object intersects the unique past co-moving space at
some t1 < t0 in our past (as shown above) such that

a(t1)sinhχ = Dnow = a(t0)(η0 − η1)

and

a(t1) =
a(t0)(η0 − η1)

sinhχ

To calculate the current space-time metric of {(t, χ, θ, φ) : χ = constant}
we determine the value t1 < t0 where one such world-line intersects the past
co-moving space as above. Then with dΩ2 = dθ2 + sin2θdφ2,

ds2 = dt2 − a2(t1)(dχ2 + sinh2χdΩ2)

Along a world-line χ = constant so dχ = 0 and we previously calculated

a(t1) =
a(t0)(η0 − η1)

sinhχ
=

Dnow

sinhχ
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Then ds2 = dt2 −D2
nowdΩ2

We note that ds2 6= 0 since null paths do not coincide with world-lines.

We can calculate the co-moving coordinate χ without much difficulty.
Assume t1 < t0. From before we calculated a(t1) = a(t0)(η0−η1)

sinhχ Then

sinhχ =
a(t0)

a(t1)
(η0 − η1)

and

sinhχ =
coshη0 − 1

coshη1 − 1
(η0 − η1)

Then

χ = sinh−1

[
coshη0 − 1

coshη1 − 1
(η0 − η1)

]
One observation we can make is that χ→∞ as η1 → 0.

How Old Was the Universe at Last Scattering?

This was when the plasma phase ended and light first emerged. The mi-
crowave background is estimated to have red shift = 1100. This corresponds
to η = 0.36. This corresponds to an age 1.13 × 10−4 times the age of the
Universe (13.8× 109years) which we can therefore compute to be 1.56× 106

years. This incidentally corresponds to χ = 9.24.

How Fast is the Universe Expanding?

We might suggest that the rate of expansion is expressed in terms of how
fast the scale factor a is increasing. Currently ȧ ≈ 1.01c. The upper limit to
v = ȧ(t)(η0−η1) is when η1 = 0. So the upper limit to the rate of expansion
would be v = ȧ(t)η0 = 1.01(5.0) = 5.05c. Asymptotically (as ȧ ↓ 1) this
becomes v = η0 in units of c. So, the rate of expansion does not approach
zero nor become exponential. The rate of expansion will eventually grow
linearly proportional to conformal time.

*The formula ρ̇ = −3(ρ + p) ȧa follows from the cosmological equations.
Setting p = 0 we get

ρ̇ = −3ρ
ȧ

a
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and consequently
ρ̇

ρ
∝ ȧ

a

We can show that p = 0 implies ρa3 = constant using the formula

ρ̇ = −3(ρ+ p)
ȧ

a

Setting p = 0 we have

ρ̇ = −3(ρ)
ȧ

a

then

ρ̇ = −3(ρ)
a2ȧ

a3

and
ρ̇a3 = −3ρa2ȧ

then
ρ̇a3 + 3ρa2ȧ = 0

Solving this ODE (w.r.t.t) we get

ρa3 = constant

**A more recent example exists of a galaxy GN-z11 with redshift 11.1.
Assume η0 = 5.0, t0 = 13.8Gyr, and a(t0) = 14.2× 109.

Then cosh5.0−1
coshη1−1 = 12.1. We solve for η1 = 2.6 and determine that

Dnow = a(t0)(η0 − η1) = 14.2(5.0 − 2.6) × 109 = 34.0 × 109lyr = 34.0Glyr.
A current red shift of z = 11.1 corresponds to a recession velocity of 2.6c
when the light was emitted and 2.4c now.

The duration of light travel is τ = t0 − t1 where t0
t1

= sinhη0−η0
sinhη1−η1 =

sinh5.0−5.0
sinh2.6−2.6 = 16.9.

Then τ = t0 − t0( t1t0 ) = t0 − t0
16.9 = 13.0Gyr.

This shows that galaxies had started forming within 1 billion years of
the Big Bang event.

For GN-z11, the Λ − CDM model gives a lookback time of 13.4 Gyr
which implies its formation within 400 Myr after the big Bang. In general,
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hyperbolic space shows a reduced lookback time of 400-500 Myr for high red
shift objects.

For high red shift objects recently observed by the JWST set z = 14.

Then η1 = 2.3 and τ = 13.3Gyr. Such a galaxy would have formed
within 500 million years after the Big Bang. Λ − CDM implies its begin-
ning almost immediately after recombination.

********************************

Text is available under the Creative Commons Attribution-ShareAlike
License (https://creativecommons.org/licenses/by-sa/4.0/)
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