
Hyperbolic Dynamics

Summary: Here we describe some of the properties of hyperbolic dy-
namics such as velocity addition and red shift. Here we develop a metric for
the negatively curved Universe and show it is close to our observed metric.


∆t2
∆x2

∆y2

∆z2

 =


cosh(α) sinh(α) 0 0
sinh(α) cosh(α) 0 0

0 0 1 0
0 0 0 1




∆t1
∆x1

∆y1

∆z1



where cosh(α) = 1√
1−v2 and sinh(α) = v√

1−v2 . Then v = tanh(α).

Let S, S′, S′′ be frames moving with uniform velocity along the x-
direction. Let S′ be moving with velocity v with respect to S and S′′ be
moving with velocity w with respect to S′. First note that sinh(α)

cosh(α) = v and
sinh(β)
cosh(β) = w. Then

∆t′′

∆x′′

∆y′′

∆z′′

 =


cosh(α) sinh(α) 0 0
sinh(α) cosh(α) 0 0

0 0 1 0
0 0 0 1



cosh(β) sinh(β) 0 0
sinh(β) cosh(β) 0 0

0 0 1 0
0 0 0 1




∆t
∆x
∆y
∆z


.
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=


cosh(α)cosh(β) + sinh(α)sinh(β) cosh(α)sinh(β) + sinh(α)cosh(β) 0 0
cosh(α)sinh(β) + sinh(α)cosh(β) cosh(α)cosh(β) + sinh(α)sinh(β) 0 0

0 0 1 0
0 0 0 1




∆t
∆x
∆y
∆z



=


cosh(α+ β) sinh(α+ β) 0 0
sinh(α+ β) cosh(α+ β) 0 0

0 0 1 0
0 0 0 1




∆t
∆x
∆y
∆z


The combined velocity is

sinh(α+β)
cosh(α+β) = cosh(α)sinh(β)+sinh(α)cosh(β)

cosh(α)cosh(β)+sinh(α)sinh(β) and dividing top and bottom by

cosh(α)cosh(β) gives the combined velocity sinh(α+β)
cosh(α+β) = v+w

1+vw .

Now consider a pulse of light with wavelength measured at S to be λe
and travelling in the direction of increasing x. Measured w.r.t. S, one
cycle completes in ∆t. The distance of the next wave front from O′ is
λe + v∆t = ∆t. Then ∆t = λe

1−v .
∆t
∆x
0
0

 =


cosh(α) sinh(α) 0 0
sinh(α) cosh(α) 0 0

0 0 1 0
0 0 0 1




∆t′

0
0
0


So,

λo = ∆t′ = ∆t
cosh(α) = λe

(1−v)cosh(α) = λe
√

1+v
1−v

= λeexp(tanh
−1v) = λe

√
cosh(α)+sinh(α)
cosh(α)−sinh(α) where λo is the observed wave-

length. Consequently, v = tanh(ln(z + 1)) where z + 1 = λo
λe

.

Now, consider a frame S′ accelerating uniformly w.r.t. S.

Let S ∼ T,X, Y, Z be stationary coordinates and let S′ ∼ t, x, y, z be
the coordinates in an accelerated frame with relative acceleration = β along
the x direction for both systems. The Rindler coordinates are:

Let

T = xsinh(βt)

X = xcosh(βt)
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The inverse transformation is

t =
1

β
tanh−1

(
T

X

)
x =

√
X2 − T 2

Then

(
dT
dX

)
=

(
βxcosh(βt) sinh(βt)
βxsinh(βt) cosh(βt)

)(
dt
dx

)
and

dS2 = dT 2 − dX2

= (βxcosh(βt)dt+ sinh(βt)dx)2 − (βxsinh(βt)dt+ cosh(βt)dx)2

= (βx)2dt2 − dx2. For x = constant, X2 − T 2 = x2 forms an hyperbola
in Minkowski space with x as the semi-major axis.

The world-lines in a Minkowski diagram consist of a foliation of hyper-
bolae indexed by x. The radial lines represent time. Where an hyperbola
intersects a radial line corresponding to a given time value (t in the Rindler
frame) tells us its position in the frame X,T . The speed of light varies

along x in the accelerated frame, vlight = |dx|
|dt| = βx where 0 < x <∞. This

should not be seen as a violation of Special Relativity because in different
coordinates (Kottler-Moller) the zero point of the accelerated frame is with
a specific observer. In this case vlight = 1 + βx. For x = 0, vlight = 1.

Hyperbolic Expansion:

Define the pseudo-sphere in R5 as R2 = x2 + y2 + z2 + w2 where

x = Rcoshχ

y = iRsinhχcosθ

z = iRsinhχsinθcosφ

w = iRsinhχsinθsinφ

Then

∂

∂R
=

∂x

∂R

∂

∂x
+
∂y

∂R

∂

∂y
+
∂z

∂R

∂

∂z
+
∂w

∂R

∂

∂w
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∂

∂χ
=

∂x

∂χ

∂

∂x
+
∂y

∂χ

∂

∂y
+
∂z

∂χ

∂

∂z
+
∂w

∂χ

∂

∂w

∂

∂θ
=

∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
+
∂z

∂θ

∂

∂z
+
∂w

∂θ

∂

∂w

∂

∂φ
=

∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z
+
∂w

∂φ

∂

∂w

and

h2
R = 〈 ∂

∂R
,
∂

∂R
〉 = (

∂x

∂R
)2 + (

∂y

∂R
)2 + (

∂z

∂R
)2 + (

∂w

∂R
)2 = 1

h2
χ = 〈 ∂

∂χ
,
∂

∂χ
〉 = (

∂x

∂χ
)2 + (

∂y

∂χ
)2 + (

∂z

∂χ
)2 + (

∂w

∂χ
)2 = −R2

h2
θ = 〈 ∂

∂θ
,
∂

∂θ
〉 = (

∂x

∂θ
)2 + (

∂y

∂θ
)2 + (

∂z

∂θ
)2 + (

∂w

∂θ
)2 = −R2sinh2χ

h2
φ = 〈 ∂

∂φ
,
∂

∂φ
〉 = (

∂x

∂φ
)2 + (

∂y

∂φ
)2 + (

∂z

∂φ
)2 + (

∂w

∂φ
)2 = −R2sinh2χsin2θ

Then the metric on the 3-pseudo-sphere is

dσ2 = R2[dχ2 + sinh2χ(dθ2 + sin2θdφ2)]

Following Barrett O’Neill in Semi-Riemannian Geometry (1983), we de-
rive the cosmological equations from GR:

Let M be a semi-Riemannian manifold, Ψ(M) the space of differentiable
vector fields on M , g = 〈·, ·〉 a metric on M and D the Levi-Civita connec-
tion. The function R : Ψ(M)3 → Ψ(M) given by

RXY Z = D[X,Y ]Z − [DX , DY ]Z

is called the Riemannian curvature tensor on M .

The Ricci curvature tensor Ric of M is the contraction of R, in coordi-
nates given by Rij = ΣmR

m
ijm and the scalar curvature S is the contraction

of Ric, in coordinates given by S = Σijg
ijRij = Σijg

ijΣmR
m
ijm.

The GR field equation is Ric− 1
2gS = 8πGT where

T = (ρ + p)U∗ ⊗ U∗ + pg where U∗ is the tensor dual of U , the time
directed flow vector in Robertson-Walker space-time orthogonal to a hyper-
surface of constant cosmic time.
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Then Ric− 1
2gS = 8πG[(ρ+ p)U∗ ⊗ U∗ + pg]

Then

Ric(U,U) = −3(ä/a)

Ric(U,X) = 0 for all X ⊥ U
Ric(X,Y ) = [2(ȧ/a)2 + 2k/a2 + ä/a]g(X,Y ) for all X, Y ⊥ U

S = 6[(ȧ/a)2 + k/a2 + ä/a]

where a is the expansion coefficient (radius for S3), k is the tri-curvature,
ρ is the mass-energy density, p is the pressure, and G is the gravitational
constant.

[Ric− 1
2gS](X,Y ) = Ric(X,Y )− 1

2Sg(X,Y ) which equals

Ric(U,U)− 1

2
Sg(U,U) +Ric(U,X)− 1

2
Sg(U,X) +Ric(X,Y )− 1

2
Sg(X,Y )

for all X,Y ⊥ U .

Now applying the field equation:

Ric(U,U)− 1

2
Sg(U,U) = 8πGT (U,U)

Ric(U,X)− 1

2
Sg(U,X) = 8πGT (U,X) for all X ⊥ U

Ric(X,Y )− 1

2
Sg(X,Y ) = 8πGT (X,Y ) for all X, Y ⊥ U

A metric signature (-,+,+,+) simplifies the calculation here so g(U,U) =
−1,

Ric(U,U)− 1
2Sg(U,U) = 8πGT (U,U) = 8πG(ρ+ p− p) so

−3(ä/a)− 1
26[(ȧ/a)2 + k/a2 + ä/a]g(U,U)

= 3(ȧ/a)2 + 3k/a2 = 8πGρ

Then 3(ȧ/a)2 + 3k/a2 = 8πGρ
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Ric(U,X)− 1
2S < U,X >= 8πGT (U,X) = 0

for all X,Y ⊥ U .

Now, since U∗(X) = U∗(Y ) = 0,

Ric(X,Y )− 1
2Sg(X,Y ) = 8πGT (X,Y ) = 8πGpg(X,Y )

for all X,Y ⊥ U .

Ric(X,Y )− 1
2Sg(X,Y ) =

[2(ȧ/a)2 + 2k/a2 + ä/a]g(X,Y )− 1
26[(ȧ/a)2 + k/a2 + ä/a]g(X,Y )

= 8πGpg(X,Y )

[2(ȧ/a)2 + 2k/a2 + ä/a− 3[(ȧ/a)2 + k/a2 + ä/a]]g(X,Y )

= 8πGpg(X,Y )

[−(ȧ/a)2 − k/a2 − 2ä/a]g(X,Y ) = 8πGpg(X,Y )

for all X,Y ⊥ U .

Then

−(ȧ/a)2 − k/a2 − 2ä/a = 8πGp

So, the cosmological equations are:

8πGρ

3
=

k

a2
+

(
ȧ

a

)2

(1)

8πGp = −2
ä

a
− k

a2
−
(
ȧ

a

)2

(2)

8πG

3
(ρ+ 3p) = −2

ä

a
(3)
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In equation (1) and (2), k = −1, 0, 1 corresponding to the tri-curvature
of negative, flat and positive. The Hubble parameter H = ȧ

a = 1
tH

. The

units of the Hubble parameter are in s−1 allowing us to define Hubble time
(now) as tH = H−1

0 so H0 = t−1
H is true by definition.

So, the Robertson-Walker metric for the hyperbolic Universe is

ds2 = dt2 − a(t)2[dχ2 + sinh2χ(dθ2 + sin2θdφ2)]

-the metric for the Universe with spatial description as S3
P . In a hyperbolic

Universe a = A
2 (coshη − 1) where A is a constant and η is conformal time.

The pseudo-sphere S3
p can be defined multiple ways. Here we are inter-

ested in defining it similarly to that above as a pseudo-sphere in R5 defined
by R2 = x2 + y2 + z2 + w2 where

x = 1Rcoshχ

y = iRsinhχcosθ

z = jRsinhχsinθcosφ

w = kRsinhχsinθsinφ

∂

∂R
=

∂x

∂R

∂

∂x
+
∂y

∂R

∂

∂y
+
∂z

∂R

∂

∂z
+
∂w

∂R

∂

∂w

∂

∂χ
=

∂x

∂χ

∂

∂x
+
∂y

∂χ

∂

∂y
+
∂z

∂χ

∂

∂z
+
∂w

∂χ

∂

∂w

∂

∂θ
=

∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
+
∂z

∂θ

∂

∂z
+
∂w

∂θ

∂

∂w

∂

∂φ
=

∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z
+
∂w

∂φ

∂

∂w

where 
∂x
∂R

∂y
∂R

∂z
∂R

∂w
∂R

∂x
∂χ

∂y
∂χ

∂z
∂χ

∂w
∂χ

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂w
∂θ

∂x
∂φ

∂y
∂φ

∂z
∂φ

∂w
∂φ


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=


1coshχ isinhχcosθ jsinhχsinθcosφ ksinhχsinθsinφ
1Rsinhχ iRcoshχcosθ jRcoshχsinθcosφ kRcoshχsinθsinφ

0 −iRsinhχsinθ jRsinhχcosθcosφ kRsinhχcosθsinφ
0 0 −jRsinhχsinθsinφ kRsinhχsinθcosφ


Then

h2
R = 〈 ∂

∂R
,
∂

∂R
〉 = (

∂x

∂R
)2 + (

∂y

∂R
)2 + (

∂z

∂R
)2 + (

∂w

∂R
)2 = 1

h2
χ = 〈 ∂

∂χ
,
∂

∂χ
〉 = (

∂x

∂χ
)2 + (

∂y

∂χ
)2 + (

∂z

∂χ
)2 + (

∂w

∂χ
)2 = −1R2

h2
θ = 〈 ∂

∂θ
,
∂

∂θ
〉 = (

∂x

∂θ
)2 + (

∂y

∂θ
)2 + (

∂z

∂θ
)2 + (

∂w

∂θ
)2 = −1R2sinh2χ

h2
φ = 〈 ∂

∂φ
,
∂

∂φ
〉 = (

∂x

∂φ
)2 + (

∂y

∂φ
)2 + (

∂z

∂φ
)2 + (

∂w

∂φ
)2 = −1R2sinh2χsin2θ

The metric ds2 = dR2 − R2[dχ2 + sinh2χ(dθ2 + sin2θdφ2)] describes a
four dimensional flat space. It is similar to the Robertson-Walker metric
ds2 = dt2−R2[dχ2 + sinh2χ(dθ2 + sin2θdφ2)] which describes a curved four
dimensional space-time. The difference is dR is replaced by dt in the first
expression.

If, however, we make Rcoshχ a proxy for time and we set

T = Rcoshχ (4)

X = Rsinhχcosθ (5)

Y = Rsinhχsinθcosφ (6)

Z = Rsinhχsinθsinφ (7)

Then R2 = T 2−X2−Y 2−Z2 is a flat space-time invariant with respect to
spatial rotations in θ and φ. It is a flattened out version of four dimensional
hyperbolic space-time.

It has the usual Lorentz invariance properties.

The above quadratic written as
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
T
X
Y
Z


T 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




T
X
Y
Z



is invariant under every Lorentz transformation Λ
T
X
Y
Z


T

ΛT


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

Λ


T
X
Y
Z



with R2 as an invariant. Using the usual method we can deduce that

dT 2 − dX2 − dY 2 − dZ2 = dR2 −R2[dχ2 + sinh2χ(dθ2 + sin2θdφ2)]

Setting r = Rsinhχ, equations (5-7) are ordinary spherical coordinates in
flat space. The sinh function grows nearly exponentially causing r = Rsinhχ
to grow nearly exponentially but it is not R doing so but the sinhχ factor.
This results in the distance to objects being further away that expected in
a flat space model. Not only are they further away than expected but they
also appear further away than they actually are due to the divergence in
lines of flux resulting from negative curvature of space.

We can represent the three optical distances* as follows (Carroll, Sean,
2019, p.348) and (Peebles, PJE, 1993, p.319):

For k = +1:

DA = (1 + z)−1H−1
0 |Ωk=+1|−1/2sin

[
|Ωk=+1|1/2

∫ z
0

dz′

E(z′)

]
For k = 0:

DA = (1 + z)−1H−1
0

∫ z
0

dz′

E(z′)

For k = −1:
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DA = (1 + z)−1H−1
0 |Ωk=−1|−1/2sinh

[
|Ωk=−1|1/2

∫ z
0

dz′

E(z′)

]
Consider two points of equal co-moving distance with one on the concave

curve and the other on the straight line. As light passes through negatively
curved space, parallel rays will diverge. So under the assumption of the in-
verse square law, the optical distance using a standard candle (e.g. a super
nova of known brightness) will appear greater (for the same co-moving dis-
tance) than if space were flat. Consequently, in a negatively curved space,
the co-moving distance of galaxies is greater (for the same look-back time)
than in flat space and they also appear even more distant due to the reduc-
tion in electromagnetic flux.

In the above figure the black lines represent rays traveling through flat
space from a and converging on a focal point. The blue lines represent rays
traveling from a through negatively curved space. The red triangle repre-
sents how the object appears further and dimmer at b.

In the article Quaternion Space-time (Part 1) we saw that

exp(H) = R+ × S3

so we would like to compute exp(iH) = exp(iτ + iχi + iθj + iφk).

Following along with the derivation in the above article

The pattern is:

(iχi + iθj + iφk)2n = (−1)2n(χ2 + θ2 + φ2)n = (χ2 + θ2 + φ2)n

(iχi + iθj + iφk)2n+1
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= i(−1)n[χ(χ2 + θ2 + φ2)ni + θ(χ2 + θ2 + φ2)nj + φ(χ2 + θ2 + φ2)nk]

exp(iχi + iθj + iφk) = Σ∞n=0
(iχi+iθj+iφk)n

n!

= Σ∞n=0
(iχi+iθj+iφk)2n

(2n)! + Σ∞n=0
(iχi+iθj+iφk)2n+1

(2n+1)!

= Σ∞n=0
(χ2+θ2+φ2)n

(2n)!

+iχΣ∞n=0
(χ2+θ2+φ2)n

(2n+1)! i + iθΣ∞n=0
(χ2+θ2+φ2)n

(2n+1)! j + iφΣ∞n=0
(χ2+θ2+φ2)n

(2n+1)! k

Let α = Σ∞n=0
(χ2+θ2+φ2)n

(2n)! and β = Σ∞n=0
(χ2+θ2+φ2)n

(2n+1)!

Then exp


0 −iχ iθ −iφ
iχ 0 iφ iθ
−iθ −iφ 0 iχ
iφ −iθ −iχ 0

 =


α −iχβ iθβ −iφβ
iχβ α iφβ iθβ
−iθβ −iφβ α iχβ
iφβ −iθβ −iχβ α



= αI + β


0 −iχ iθ −iφ
iχ 0 iφ iθ
−iθ −iφ 0 iχ
iφ −iθ −iχ 0

 = α1 + β(iχi + iθj + iφk)

For the case χ 6= 0, θ = 0, φ = 0

α = Σ∞n=0
(χ2)n

(2n)! = Σ∞n=0
χ2n

(2n)! = coshχ

and iχβ = iχΣ∞n=0
(χ2)n

(2n+1)! = iΣ∞n=0
χ2n+1

(2n+1)! = isinhχ

Then exp


0 −iχ 0 0
iχ 0 0 0
0 0 0 iχ
0 0 −iχ 0

 =


coshχ −isinhχ 0 0
isinhχ coshχ 0 0

0 0 coshχ isinhχ
0 0 −isinhχ coshχ


= coshχ1 + isinhχi

For a quaternion q = a1 + bi + cj + dk, ‖q‖ =
√
qq∗

where q∗ = a1− bi− cj− dk

Then ‖coshχ1 + isinhχi‖ =
√
cosh2χ− sinh2χ = 1
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For the case χ = 0, θ 6= 0, φ = 0

α = Σ∞n=0
(θ2)n

(2n)! = Σ∞n=0
θ2n

(2n)! = coshθ

and iθβ = iθΣ∞n=0
(θ2)n

(2n+1)! = iΣ∞n=0
θ2n+1

(2n+1)! = isinhθ

Then exp


0 0 iθ 0
0 0 0 iθ
−iθ 0 0 0

0 −iθ 0 0

 =


coshθ 0 isinhθ 0

0 coshθ 0 isinhθ
−isinhθ 0 coshθ 0

0 −isinhθ 0 coshθ


= coshθ1 + isinhθj

‖coshθ1 + isinhθj‖ =
√
cosh2θ − sinh2θ = 1

For the case χ = 0, θ = 0, φ 6= 0

α = Σ∞n=0
(φ2)n

(2n)! = Σ∞n=0
φ2n

(2n)! = coshφ

and iφβ = iφΣ∞n=0
(φ2)n

(2n+1)! = iΣ∞n=0
φ2n+1

(2n+1)! = isinhφ

exp


0 0 0 −iφ
0 0 iφ 0
0 −iφ 0 0
iφ 0 0 0

 =


coshφ 0 0 −isinhφ

0 coshφ isinhφ 0
0 −isinhφ coshφ 0

isinhφ 0 0 coshφ


= coshφ1 + isinhφk

‖coshφ1 + isinhφk‖ =
√
cosh2φ− sinh2φ = 1

Furthermore,

[α1+β(iχi+iθj+iφk)][α1−β(iχi+iθj+iφk)] = 1(α2−β2χ2−β2θ2−β2φ2)

Then exp(iH) = {eiτexp


0 −iχ iθ −iφ
iχ 0 iφ iθ
−iθ −iφ 0 iχ
iφ −iθ −iχ 0

 : (τ, χ, θ, φ) ∈ R4}

∼ S1 × S3
P since {q : ||q|| =

√
α2 − β2χ2 − β2θ2 − β2φ2 = 1} ∼= S3

P .
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So, exp(iH) ∼ S1 × S3
P . Then changing iτ to τ

{eτexp


0 −iχ iθ −iφ
iχ 0 iφ iθ
−iθ −iφ 0 iχ
iφ −iθ −iχ 0

 : (τ, χ, θ, φ) ∈ R4} = R+ × S3
P

Now, consider the exponential of

S = {τσ0 + xσx + yσy + zσz : τ, x, y, z ∈ R}

S is the span of the Pauli matrices including the identity matrix σ0 = I.

σ0 commutes with the other Pauli matrices and there is an isomorphism
(σx, σy, σz)↔ (i, j,k) given by σx ↔ ii, σy ↔ ij, σz ↔ ik.

Consequently, eS = R+ × S3
P which we assert is the topology of the

Universe.

As mentioned above, we can show eH = R+×S3 where H = span{1, i, j,k},
the span (over R) of quaternions.

For R×R3 = R4, there is no space X s.t. eX = R+ ×R3 but the Lie
algebra (the space of infinitesimal generators) is R4.

The Universe has the three possible topologies:

Flat: R×R3. The Lie algebra is R4

Positively curved: R+ × S3 where S3 is the 3-sphere. Its tangent space
is H, the span of quaternions.

Negatively curved: R+×S3
P where S3

P is the 3-pseudosphere. Its tangent
space is S, the span of Pauli matrices which has relevance for the existence
of fermions.

1/2-Spin Rotations
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The quaternions are associated with spatial rotations of the form v′ =
R(u,θ)(v) = wvw−1 where v = xi + yj + zk is an initial vector before rota-
tion, u = uxi + uyj + uzk is a unit vector along the axis of rotation (Euler
axis), θ is an angle of rotation, and

w = exp[ θ2(uxi + uyj + uzk)] = cos θ21 + (uxi + uyj + uzk)sin θ2 and

w−1 = exp[− θ
2(uxi + uyj + uzk)] = cos θ21− (uxi + uyj + uzk)sin θ2

We readily observe that R(u,2π)(v) = (−1)v(−1) = v and R(u,4π)(v) =
(1)v(1) = v.

We can define the 2-to-1 surjective homomorphism φ : H→ SO(3)\{−I}

by φ(A) = φ(a1 + bi + cj + dk)

= −1
2

 Tr(iAiA−1) Tr(iAjA−1) Tr(iAkA−1)
Tr(jAiA−1) Tr(jAjA−1) Tr(jAkA−1)
Tr(kAiA−1) Tr(kAjA−1) Tr(kAkA−1)


= −

 (c2 + d2)− (a2 + b2) 2(ad− bc) −2(ac+ bd)
−2(ad+ bc) (b2 + d2)− (a2 + c2) 2(ab− cd)
2(ac− bd) −2(cd+ ab) (c2 + b2)− (a2 + d2)


where Tr(q01 + q1i + q2j + q3k) = q0.

It is evident that φ(A) = φ(−A) so the mapping is 2-to-1 and φ(1) =
φ(−1) = I so Ker(φ) = {1,−1}.*

The rotation θ must be with respect to the Euler axis so R(u,θ)(v) =
R(−u,−θ)v are equal rotations in SO(3) corresponding to φ(A) = φ(−A)
where A and −A have reversed parity. In H the mapping A → −A corre-
sponds to a 1/2 rotation+(multiple full rotations). That is, −A = ei(π+n2π)A.
Compare this to spinor rotation as discussed in Pauli and Dirac Matrices
where the rotation operator on a 4× 2 spinor is

R(θ)


g −h
h g
k −l
l k

 = (cos θ21 + sin θ2(nxi + nyj + nzk))


g −h
h g
k −l
l k


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=


cos(θ/2) nzsin(θ/2) −nysin(θ/2) nxsin(θ/2)
−nzsin(θ/2) cos(θ/2) −nxsin(θ/2) −nysin(θ/2)
nysin(θ/2) nxsin(θ/2) cos(θ/2) −nzsin(θ/2)
−nxsin(θ/2) nysin(θ/2) nzsin(θ/2) cos(θ/2)



g −h
h g
k −l
l k


where n is the unit Euler axis corresponding to the unit rotation axis

u referred to above. For such a rotation, R(θ) 6= R(θ + n2π) (n odd) but
R(θ) = R(θ + n2π) (n even). Relative to the rotation group SO(3) there is
no difference between φ(A) and φ(−A) though relative to H there is a 1/2 ro-
tation A→ −A. Applying R(θ) to a general quaternion q = a1+bi+cj+dk
gives

R(θ)(q) = (acos θ2 +sin θ2(−bnx−cny−dnz))1+(bcos θ2 +sin θ2(anx+dny−
cnz))i+(ccos θ2 +sin θ2(−dnx+any+bnz))j+(dcos θ2 +sin θ2(cnx−bny+anz))k

We note that R(2π)(q) = −q but R(4π)(q) = q. So, like a Möbius
Strip, one time around reverses the orientation but twice around restores it.

Now, a rotation in Pauli spin space is given by Û |α〉 where

Û = exp(− i
h̄
θu · Ŝ) =

(
cos( θ2) −sin( θ2)e−iφ

sin( θ2)eiφ cos( θ2)

)
With the simplifyinjg assumption that the rotation is around the z axis we
then have φ = 0 and eiφ = 1 and

Û =

(
cos( θ2) −sin( θ2)

sin( θ2) cos( θ2)

)
Then with a θ = 2π rotation(

−1 0
0 −1

)(
1/
√

2

1/
√

2

)
=

(
−1/
√

2

−1/
√

2

)

which reverses the orientation. Applying the operator Û again restores the
original orientation. Think of the Mobius strip. One time around reverses
orientation. Twice around restores it.

**********************************************

Text is available under the Creative Commons Attribution-ShareAlike
License (https://creativecommons.org/licenses/by-sa/4.0/)
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