Hyperbolic Dynamics
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Summary: Here we describe some of the properties of hyperbolic dy-
namics such as velocity addition and red shift. Here we develop a metric for
the negatively curved Universe and show it is close to our observed metric.
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where cosh(a) = 7=z and sinh(a) = 7=z Then v = tanh(a).

Let S, S’, S” be frames moving with uniform velocity along the -
direction. Let S’ be moving with velocity v with respect to S and S” be

moving with velocity w with respect to S’. First note that igﬁggg = v and
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The combined velocity is

sinh(at+p) _ cosh(a)sinh(B)+sinh(a)cosh(B)
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cosh(a)cosh(B) gives the combined velocity

and dividing top and bottom by

sinh(a+B) _ v4w
cosh(a+pB) — 14+vw’

Now consider a pulse of light with wavelength measured at S to be A,
and travelling in the direction of increasing x. Measured w.r.t. S, one
cycle completes in At. The distance of the next wave front from O’ is

Ae + vAt = At. Then At = 1/\51;'
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Ao = At = cosh%oz) — (1—v)cosh(a) — Ae ﬁ
cosh(a)+sinh(a)

= Aeexp(tanh~1v) = A where )\, is the observed wave-

cosh(a)—sinh(a)
length. Consequently, v = tanh(In(z + 1)) where z + 1 = 3\\—‘6’

Now, consider a frame S’ accelerating uniformly w.r.t. S.

Let S ~ T,X.,Y, Z be stationary coordinates and let S’ ~ t,z,y,z be
the coordinates in an accelerated frame with relative acceleration = 3 along
the = direction for both systems. The Rindler coordinates are:

Let
T = xsinh(Bt)
X = xcosh(Pt)
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The inverse transformation is

1 T
t = —tanh™ ! ()

I} X
r = X272
dT' '\ [ Bxzcosh(ft) sinh(Bt) dt
Then ( dx > N ( Bxsinh(Bt) cosh(Bt) > ( dx )
and

dS* = dT?* — dX?
= (Bzcosh(Bt)dt + sinh(Bt)dx)? — (Bwsinh(Bt)dt + cosh(Bt)dz)?

= (Bx)?dt? — da®. For x = constant, X?> — T? = x? forms an hyperbola
in Minkowski space with x as the semi-major axis.

The world-lines in a Minkowski diagram consist of a foliation of hyper-
bolae indexed by x. The radial lines represent time. Where an hyperbola
intersects a radial line corresponding to a given time value (¢ in the Rindler
frame) tells us its position in the frame X,T. The speed of light varies
along z in the accelerated frame, vjgn: = %—f' = Pz where 0 < x < co. This
should not be seen as a violation of Special Relativity because in different
coordinates (Kottler-Moller) the zero point of the accelerated frame is with

a specific observer. In this case vjjgps = 1+ Bx. For x = 0, vjign: = 1.
Hyperbolic Expansion:

Define the pseudo-sphere in R® as R? = 22 4+ y? + 22 + w? where

x = Rcoshyx
y = 1Rsinhycosf
z = 1iRsinhysinfcoso
w = iRsinhysinfsing
Then
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and

W= o Oy = (P Dy (Do (0 oy

hy = <@axa 6;> = (2;?)2 + (23{)2 + (2;)2 + (‘37“;)2 = -R?

hg = <%, %> - (%)2 + (%)2 + (%)2 + (%’)2 = —R%sinh®y

hy = <88¢, ;;Q = (22)2 + (gi)2 + (22)2 + (‘ZZ;)? = —R%sinh®ysin’0

Then the metric on the 3-pseudo-sphere is
do® = R*[dx? + sinh?x(d0? + sin*0dp?))]

Following Barrett O’Neill in Semi-Riemannian Geometry (1983), we de-
rive the cosmological equations from GR:

Let M be a semi-Riemannian manifold, U (M) the space of differentiable
vector fields on M, g = (-,-) a metric on M and D the Levi-Civita connec-
tion. The function R : ¥(M)3 — ¥(M) given by

RxyZ = Dixy|Z — [Dx, Dy]Z
is called the Riemannian curvature tensor on M.

The Ricci curvature tensor Ric of M is the contraction of R, in coordi-

nates given by R;; = %, R, and the scalar curvature S is the contraction
m

of Ric, in coordinates given by S = ¥;; g R;j = %5 g Y R
The GR field equation is Ric — % gS = 8nGT where

T = (p+ p)U" @ U* + pg where U* is the tensor dual of U, the time
directed flow vector in Robertson-Walker space-time orthogonal to a hyper-
surface of constant cosmic time.



Then Ric — 39S = 8xG|(p + p)U* @ U* + pyg]
Then

U) —3(a/a)
Ric(U,X) = 0 forall X LU
Y) = [2(a/a)? +2k/a® +id/alg(X,Y) for all X,Y LU
S = 6[(a/a)*+ k/a*+ i/a]
where a is the expansion coefficient (radius for S?), k is the tri-curvature,

p is the mass-energy density, p is the pressure, and G is the gravitational
constant.

[Ric — $gS)(X,Y) = Ric(X,Y) — 1Sg(X,Y) which equals
1 1 1
Ric(U,U) — §Sg(U, U)+ Ric(U,X) — §Sg(U,X) + Ric(X,Y) — §Sg(X, Y)
forall X,Y 1 U.

Now applying the field equation:

Ric(U,U)—%sg(U,U) — $xGT(U,U)

1
Ric(U, X) — §Sg(U,X) = 8rGT(U,X) forall X LU
Ric(X,Y) — %Sg(X, Y) = 8nGT(X,Y) forall X,)Y LU

A metric signature (-,4,4+,+) simplifies the calculation here so g(U,U) =
-1

Ric(U,U) — 1Sg(U,U) = 87GT(U,U) = 87G(p +p — p) so
—3(i/a) — 36[(a/a)® + k/a* + d/alg(U,U)
=3(a/a)? + 3k/a® = 87Gp

Then 3(a/a)? + 3k/a® = 87Gp



Ric(U,X) - 3S < U, X >=8rGT(U,X) =0

for all X,Y 1L U.

Now, since U*(X) = U*(Y) =0,

Ric(X,Y) — 199(X,Y) = 8nGT(X,Y) = 87Gpg(X,Y)
for all X,Y 1L U.

Ric(X,Y) = 559(X,Y) =

2(a/a)? + 2k/a® + d/alg(X,Y) — 36[(a/a)? + k/a® + i/alg(X,Y)
= 87Gpg(X,Y)

2(a/a)? +2k/a® + d/a — 3[(a/a)® + k/a® + i/a]]g(X,Y)
= 87Gpg(X,Y)

[—(a/a)?* — k/a® — 2d/alg(X,Y) = 87Gpg(X,Y)

forall X,Y 1L U.

Then
—(a/a)? — k/a® — 2i/a = 87Gp

So, the cosmological equations are:
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In equation (1) and (2), k = —1,0, 1 corresponding to the tri-curvature

of negative, flat and positive. The Hubble parameter H = % = i The
units of the Hubble parameter are in s~! allowing us to define Hubble time

(now) as tg = Hy ' so Hy = t5' is true by definition.

So, the Robertson-Walker metric for the hyperbolic Universe is
ds® = dt* — a(t)*[dx? + sinh®x(d6? + sin*0dp?)]

-the metric for the Universe with spatial description as S?D. In a hyperbolic
Universe a = %(coshn — 1) where A is a constant and 7 is conformal time.

The pseudo-sphere Sg can be defined multiple ways. Here we are inter-
ested in defining it similarly to that above as a pseudo-sphere in R® defined
by R? = 22 4+ y? + 2% + w? where

x = 1Rcoshy
y = 1iRsinhyxcosf
z = JjRsinhysinfcoso
w = kRsinhysinfsing
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The metric ds®> = dR? — R%[dx? + sinh?x(d0* + sin?0d¢?)] describes a
four dimensional flat space. It is similar to the Robertson-Walker metric
ds? = dt? — R?[dx? + sinh?x(d6? + sin*d¢?)] which describes a curved four
dimensional space-time. The difference is dR is replaced by dt in the first
expression.

If, however, we make Rcoshy a proxy for time and we set

T = Rcoshy (4)
X = Rsinhxcost (5)
Y = Rsinhysinfcoso (6)
Z = Rsinhyxsinfsing (7)

Then R? = T? — X2 —Y? — 7?2 is a flat space-time invariant with respect to
spatial rotations in 6 and ¢. It is a flattened out version of four dimensional
hyperbolic space-time.

It has the usual Lorentz invariance properties.

The above quadratic written as



T

T 1 0 0 O T
X 0 -1 0 0 X
Y 0 0 -1 0 Y
A 0 0 0 -1 VA

is invariant under every Lorentz transformation A

7\7° 1 0 0 0 T
X 1o -1 0 o X
y | Alo o 210 |My
Z 00 0 -1 A

with R? as an invariant. Using the usual method we can deduce that
dT? — dX? — dY? — dZ? = dR? — R?[dX* + sinh®x(d6? + sin*0d¢?)]

Setting » = Rsinhy, equations (5-7) are ordinary spherical coordinates in
flat space. The sinh function grows nearly exponentially causing r = Rsinhy
to grow nearly exponentially but it is not R doing so but the sinhy factor.
This results in the distance to objects being further away that expected in
a flat space model. Not only are they further away than expected but they
also appear further away than they actually are due to the divergence in
lines of flux resulting from negative curvature of space.

We can represent the three optical distances* as follows (Carroll, Sean,
2019, p.348) and (Peebles, PJE, 1993, p.319):

For k = +1:
D = (Ut 2) 7 Hy Qe |25 |94 a2 [ 825

For k = 0:

Da=(1+2)""Hy' 5 £

For k = —1:



Dy = (1+42) " Hy ' |Qpe—1|"Y2sinh {\Qk:A,l/Q 0 Edé'l/)}

Consider two points of equal co-moving distance with one on the concave
curve and the other on the straight line. As light passes through negatively
curved space, parallel rays will diverge. So under the assumption of the in-
verse square law, the optical distance using a standard candle (e.g. a super
nova of known brightness) will appear greater (for the same co-moving dis-
tance) than if space were flat. Consequently, in a negatively curved space,
the co-moving distance of galaxies is greater (for the same look-back time)
than in flat space and they also appear even more distant due to the reduc-

tion in electromagnetic flux.

\

In the above figure the black lines represent rays traveling through flat
space from a and converging on a focal point. The blue lines represent rays
traveling from a through negatively curved space. The red triangle repre-
sents how the object appears further and dimmer at b.

In the article Quaternion Space-time (Part 1) we saw that
exp(H) = R" x &3
so we would like to compute exp(iH) = exp(it + ixi + i0j + igk).
Following along with the derivation in the above article
The pattern is:
(ixi + i0] +igk)*" = (=1)**(x* + 0° + ¢)" = (x* + 0> + ¢°)"

(ixi + i60j + igk)2n+1
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=i(—=1)"[x(x* + 02+ ¢*)"i + 0(x> + 02 + ¢*)"j + o (x> + 0> 4 ¢*)"K]

(ixi+i0j+igk)™
n!

exp(ixi+ i0j +igk) = X024

ixi+ioj+igk)?” ixi+ioj+igk)2ntt
— 2?20% +ye X +z( 237;1%!)

24924 2)n
— E%O:o (x (2n)!¢ )

3 292 2\n . 202 2\n . 292 2\n
+ix22, (x (Jgn++1<)¢!) i+i0n° *+0°+¢2) jFipXee, OC+02+¢7)

@n+1)! @n+1)!
2 2 2\n 2 2 2\n
0 —ix 10 —ig « —ixB 108 —ipp
5% 0 ip i _ x5 @ 8 108
Thenexp | Go s 0 iy | T | -8 —isg o  iyB
ip —i0 —ix O ip8  —i0p —ixf «

0 —ix 8 —ig
ix 0  ip b
—if —i¢p O 5%
ip —i0 —ix O
For the case x #0,0 =0,0 =0

=al+p = al+ Bixi+ ibj + igk)

o) (XQ)n_ 00 in _

=020 G = Sne0 oy = coshy
and ixf8 = ixz%ozo% = izgozo% = 1sinhy
0 —ix O 0 coshy —isinhy 0 0
Then ezp Z(;< 8 8 2(3( - iSighX CO%hX coghx isighx
0 0 —ix O 0 0 —isinhy coshy

= coshx1 + isinhxi
For a quaternion q = al + bi + ¢j + dk, ||q|| = vaq*

where q* = al — bi — ¢j — dk

Then |coshx1 + isinhxi|| = \/cosh?x — sinh?y = 1

11



For the case x =0,0 #£ 0,0 =0

o =30 0((02)) =X 27; = coshf
and 10 = 0352 sty = 15520 (g gy = isinhf
0 0 @ 0 coshf 0 1sinh6 0
Then 0 0 0 0 | 0 coshf 0 1sinhf
P g0 0 0 || —isinke 0 cosh® 0
0 —i8 0 O 0 —18inh0 0 coshf

= coshf1 + isinhfj

|coshf1 + isinhfj|| = v/cosh20 — sinh20 = 1

For the case x =0,0 =0,¢ #0

2
=X ((d)n)) =32, (¢ W= = cosh¢
. ) 2n+1

and 1¢pf = ipX52 07 2n+1) =120 0(2n+1), = isinh¢

0 0 0 —i¢p cosho 0 0 —isinhg

0 0 4w O _ 0 coshg  isinh¢ 0
Pl o —ipg 0 o | 0  —isinh¢ coshg 0

i 0 0 0 1sinhg 0 0 coshg

= cosh¢l + isinh¢k

|coshgl + isinhgk|| = \/cosh2¢ — sinh?2¢p = 1
Furthermore,

[al+B(ixi+i0j+idk)][al —Blixi+ifj+isk)] = 1(a® — B*x* — 326 — 5%¢?)
0 —iy i —id
ix 0 ip B

0 —i6 0 iy
id  —if —ix O

~ St x 8% since {q: ||q|| = Va? — 2x2 — (202 — B2¢2 = 1} = S3.

Then exp(iH) = {ei"exp (1yx,0,9) € R4}
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So, exp(iH) ~ S! x S3. Then changing it to T

0 —ix i0 —ig
ix 0 i b
—i0 —i¢p 0 iy
ip  —if —ixy 0

{e"exp L (1,x,0,9) e R*} =R x 5

Now, consider the exponential of
S ={r00 + 20, +yo,+ 20, :7,2,y,2 € R}
S is the span of the Pauli matrices including the identity matrix oy = I.

oo commutes with the other Pauli matrices and there is an isomorphism
(02,0y,0:) <> (1,],k) given by o, < ii, oy <> ij, 0, < ik.

S

Consequently, e® = R x S3, which we assert is the topology of the

Universe.

As mentioned above, we can show eH — R+ %53 where H = span{1,1i,j, k},
the span (over R) of quaternions.

For R x R? = R, there is no space X s.t. eX = R* x R3 but the Lie
algebra (the space of infinitesimal generators) is R2.

The Universe has the three possible topologies:
Flat: R x R?. The Lie algebra is R*

Positively curved: RT x 83 where S® is the 3-sphere. Its tangent space
is H, the span of quaternions.

Negatively curved: R* x 5%, where S% is the 3-pseudosphere. Its tangent
space is S, the span of Pauli matrices which has relevance for the existence

of fermions.

1/2-Spin Rotations
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The quaternions are associated with spatial rotations of the form v/ =
Rp)(v) = wvw ! where v = zi + yj + zk is an initial vector before rota-
tion, u = ugi + uyj + u.k is a unit vector along the axis of rotation (Euler
axis), 6 is an angle of rotation, and

w = exp[§ (upi + uyj + u.k)] = cos§1 + (ugi + uyj + u.k)sing and

wl = eap[— Y (usi + uyj + uk)] = cos91 — (uyd + uyj + u.k)sing

We readily observe that Ry aq)(v) = (=1)v(=1) = v and Ry 4q) (V) =
(1)v(1) =v.

We can define the 2-to-1 surjective homomorphism ¢ : H — SO(3)\{—1I}

by ¢(A) = ¢(al + bi+ ¢j + dk)

Tr(iAiA=1) Tr(iAjA=1) Tr(idkA™!)
=—3| Tr(aiA™") Tr(AjA™') Tr(jAkA™Y)
Tr(kAIA~) Tr(kAjAY) Tr(kAkA™))
(® + d?) — (a® + b?) 2(ad — bc) —2(ac + bd)
=— —2(ad + be) (b +d?) — (a® + ?) 2(ab — cd)
2(ac — bd) —2(cd + ab) (® +b%) — (a® + d?)

where Tr(qol + q1i + ¢2j + g3k) = qo.

It is evident that ¢(A) = ¢(—A) so the mapping is 2-to-1 and ¢(1) =
¢(—1)=1so Ker(¢) ={1,-1}.*

The rotation § must be with respect to the Euler axis so Ry (V) =
R(_u,—¢)Vv are equal rotations in SO(3) corresponding to ¢(A) = ¢(—A)
where A and —A have reversed parity. In H the mapping A — —A corre-
sponds to a 1/2 rotation+(multiple full rotations). That is, —A = e*(T+727) 4,
Compare this to spinor rotation as discussed in Pauli and Dirac Matrices
where the rotation operator on a 4 x 2 spinor is

g —h g —h

h ) . . h
R(6) i —gl = (cos41 + sin (n,i+ nyj + n.k)) k —gl

Ik Ik
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cos(0/2)  mnysin(0/2) —nysin(0/2) ngsin(0/2) g —h

_ | —nesin(0/2)  cos(0/2)  —ngsin(8/2) —nysin(6/2) h g
nysin(0/2)  nysin(0/2) cos(6/2) —nzsin(0/2) k=l
—ngsin(0/2) nysin(6/2)  n.sin(6/2) cos(0/2) Ik

where n is the unit Euler axis corresponding to the unit rotation axis
u referred to above. For such a rotation, R(0) # R(6 + n27) (n odd) but
R(0) = R(f + n27) (n even). Relative to the rotation group SO(3) there is
no difference between ¢(A) and ¢(—A) though relative to H thereis a 1/2 ro-
tation A — —A. Applying R() to a general quaternion q = al+bi+cj+dk
gives

R(0)(q) = (acos§+siny(—bn,—cny—dn.))1+(bcoss +sinl (an, +dn, —
eny))i+ (ccosg —I—Sing(—dnm +any+bn;))j+ (dcosg +sing(cnx —bny+an;))k

We note that R(27)(q) = —q but R(47)(q) = q. So, like a Mdobius
Strip, one time around reverses the orientation but twice around restores it.

Now, a rotation in Pauli spin space is given by U |a) where

Je 0 )
)

With the simplifyinjg assumption that the rotation is around the z axis we
then have ¢ = 0 and €'® = 1 and

7 ( cos(

sin(

R ; N ) _ain(?
U= exp(—%@u -S) = < 60552) Sm(%

sin(%)et? cos

IIISSNIISS

) fsin(g)
) cos(g)
Then with a 6§ = 27 rotation
-1 0 V2 [ -1/V2
0 -1 1/v2 )\ —-1/v2
which reverses the orientation. Applying the operator U again restores the

original orientation. Think of the Mobius strip. One time around reverses
orientation. Twice around restores it.
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Text is available under the Creative Commons Attribution-ShareAlike
License (https://creativecommons.org/licenses/by-sa/4.0/)
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