Quaternion Space-Time

In Special Relativity the metric ds? = cdt? — dx? — dy? — dz? is invariant
under inertial transformations. For convenience we adopt units where ¢ = 1.
Such invariance means observers with constant relative velocity will measure
ds? to be the same.

For example, an event with coordinate displacement (Aty, Az, Ay, Azy)
with respect to observer 1 and (Atg, Axg, Ays, Azy) with respect to observer
2 has the property that At? — Ax? — Ay? — Az? = At — Az — Ay3 — Az

Knowing the coordinate displacement with respect to one observer we
can find the corresponding displacement with respect to the other observer
using the Lorentz transformation.

The Lorentz transformation describes space-time transformation between
inertial frames in motion relative to each other.* We assume for simplicity
that the direction of motion is along the x-axis for each. Then the coordi-
nates transform according to:

Aty cosh(a) sinh(a) 0 0 Aty
Azy | | sinh(a) cosh(a) 0 0 Az
Ay | 0 0 10 Ay
AZ2 0 0 0 1 Azl

where cosh(a) = ﬁ and sinh(a) = \/ﬁ cosh(a) is always posi-

tive but sinh(«) can be positive or negative depending on the direction of
motion.

The above metric ds? = cdt? — dz? — dy? — dz? is referred to as the
Minkowski metric. It has a very natural expression with respect to quater-
nions.

Let H = span{1,1i,j,k} where

10 0 0 0 -1 0 0
1— 0100 i 1 0 0 0
0010 0 0 0 1
0 001 0 0 -1 0



0 0 10 0 0 0 —1
|0 0o 01|, |00 10
I=1 -1 0 0 0 10 -1 0 o0

0 -1 0 0 1 0 0 0

It can easily be shown that i, j, k anti-commute and that i? = j?> = k? =
—1 and ijk = —1.

The quaternion multiplication table is:

x |1 i j k
11| i |j |k
i|i|-1| k| —j
Jlil-k|-1]1i
k|k| j|—-i|-1

The space of quaternions (H = span{1,1,j,k} over R) forms a division
algebra with an associated exponential exp(H) = R x S3.

exp(Tl + xi+ 0j + ¢k) = e"exp(xi + 0j + ¢k)

Want to find exp(xi + 0 + ok) = ngo (k"
(xi+6j+ok) =1

(xi+0j+ ¢k)" = xi +0j + ¢k

(i +6) + ok)* = —x* — 6> — ¢* = —(x* + 0* + ¢*)

(i +0j + ok)® = —(x* + 6% + ¢%)(xi + 0 + ¢k)

= —X(X* + 07+ )i+ —00 + 0>+ ¢*)j — o(x* + 0% + 7))k

(i + 05 + ¢k)* = (=x(x* + 0% + )i — 0> + 6% + ¢°)j — o(° + 6% +
¢*)k)(xi + 0] + ¢k)

(xi—+6j+ ok)® = +(x* + 6%+ ¢?)%(xi + 0j + ¢k)



= X0+ 02+ )21+ 00 + 6% + ¢%)%5 + ¢(* + 6% + ¢°)°Kk

; 2(Xi + 05+ ok)® = (x(x% + 02 4+ ¢*)%1i 4+ 0(x> + 0% + ¢2)%) + d(x% + 02 +
#7)k)(xi+ 0j + ¢k)

— _XQ(X2 4 92 4 ¢2)2 _ 92(X2 4 02 4 ¢2)2 _ ¢2(X2 4 92 4 ¢2)2

_ —(X2 + 62+ ¢2)3

(A+0i+0k)" = —x(x* +02+¢%)’1—0(x* +6%+¢°)°] — o (x* +0° +¢*)°k

(O + 0+ k)* = (=x(x* + 6% + ¢)%i = 0(x* + 6% + ¢°)°] — 6(x* + 6° +
¢%)%k) (xi + 0j + ¢k)

— +X2(X2 + 92 + ¢2)3 + 02(X2 + 92 + ¢2)3 + X2(X2 + 02 + ¢2)3

=+(x? + 62 + ¢?)*

(xi+0j+0k)” = X(x* 6% +6*) i+ 0(x* + 6% +6°)"j+ 6 (x* + 6%+ ¢°) 'k

The pattern is:

O+ 0§ + k)" = (=1)"(x* + 0% + ¢*)"

(xi +0j + ¢k)*+1

= (1" + 0% + )"+ 0(x? + 02 + 6°)"j + ¢ (x* + 0% + ¢*)"K]

exp(xi + 0j + ¢k) = noo , (d+0iok)”

i+60j+ok)2" i+0j+¢k)2n+t
R
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0 —x 0 —o o —xB 08 —¢p
x 0 o 0 | x8 o« op 08

themerp | Zp 0 v |T| S08 —68 o B
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For the case x #0,0 =0,0 =0

2\n 2n
Q= Z%ozo(_l)n(én))x = E%ozo(_l)nén)x = Cosx

2\n 2n+1 .
and X3 = x5 (—1)" (2 = B2 (—1)" &y = sinx
0 —x 0 0 cosy —siny 0 0
x O 0 0 | | sinx cosx 0 0
Then exp 0o 0 0 x| 0 0 cosx  siny
0 0 —x O 0 0 —siny cosx

= cosx1 + sinxi

For a quaternion q = al + bi + ¢j + dk, ||q|| = vaq*
where q* = al — bi — ¢j — dk

Then ||cosx1 + sinyi|| = \/cosZy + siny = 1

For the case x =0,0 £ 0,0 =0

o n 92 " 00 n 2n

o = D520(—1)" G = 5220 (—1)" Gy = cost
o0 n 92 " o0 n 2n+1 .

and 08 = 0352 (—1)" ol = 32 o(—1)" gy = sind)
0 0 6 0 cosb 0 sinfd 0

Then ex 0 06 ]_ 0 cosd 0 sinb

Pl g 0 00 |7 | —sine 0 cosf 0

0 -6 00 0 —sinf 0 cost

= cos01 + sinfj



|cosf1 + sinbj|| = Vcos?0 + sin?6 = 1

For the case x =0,0 =0,¢ #0

2n

2\n
o= Z%ozo(—l)n(d) )_ = Eoiozo(_l)n% = cos¢

(¢2)" n @2l

and ¢5 = ¢Z%O:0(_1)n% - Z;.Lozo(—l) % = SZ?’L(]S

0 0 0 —¢ cos® 0 0 —sing
cap 0 0 o O _ 0 cosp  sing 0

0 —p 0 0 0 —sing coso 0

¢ 0 0 0 sing 0 0 oS}

= cos¢pl + singpk

|lcospl + singk|| = \/cos?¢ + sin?¢p =1

0 —x 0 —9¢
e:np(H) = {€T€13p _Xg _0¢ 21)5 i : (T7X7 07 ¢) € R3}
¢ -0 —x O

and exp(ImH) = S3 since

{a:|lall = Va2 + B2+ B202 + 292 = 1} = S5,
So, exp(H) = R x S3.

The Lie group SU(2) given by {al +bi—cj+dk:a® +b>+ % +d? =1}

is diffeomorphic to S® = {al+bi+cj+dk : a®+b*+c?+d? = 1} and has as
generators the set {i, —j, k}. SU(2) is used in the description of electroweak
interactions and beta decay.

The Lie algebra su(2)=span{i, j, k} has the commutation relations
[iaj] = 2k, [jak] = 2i, and [ka i] =2j.
Given two quaternions q = ¢11 + goi + ¢3j + q4k

and r = r11 + roi + r3j + r4k, it is easy to show that



qr = ¢ir + r1q + I'mq x Imr — Imq - Imr where ’x’ and ’-’ are the
standard vector operations.

If both q and r are pure imaginary then
qr=qxXr—q-r

The Maxwell equations in vacuum are:
V-E=0and VX E=— 8B and
V-B=0and V x B = 52E
where V = i% +j8% —|—k%

The first pair can be expressed in quaternion form as:
VE = -5 and the second as VB = 612 da}f

In units where ¢ = 1, Maxwell’s equations can be expressed in the form

VE\ (0 -1 OE /ot
vB ) {1 0 oB/ot
Returning to the Minkowski metric, it is expressed in quaternion form as

dS? = (dt1)? + (dxi + dyj + dzk)? = dt’1 — dz?1 — dy?1 — dz°1.

which can also be expressed as

11 0 0 0 dt
dS_(dt dr dy dz) 0 0§ o py
0 0 0 kk dz

Setting *dt1l = dxi+ dyj + dzk we can then also express the Minkowski
metric as dS% = (dt1)? + (xdt1)?.

We can identify a real number u with u1l and express this as u ~ ul.
Then ds? ~ dS?.



Let M be a real symmetric bilinear form. It can be diagonalized by some
invertible Q where D = QMQ~".

We can say that M preserves quaternion structure if for co-ordinates
t,u,v,w and quaternion frame {1,e,,e,, ey},

QMQ™'1
1 0 0 O |[Doo| 0 0 0 10 0 0
| 0 e 0 0 0 |Du|l 0 0 0 e 0 0
"1 0 0 e O 0 0 |Dw| O 0 0 e O
0 0 0 ey 0 0 0 |Dss| 0 0 0 ey

Preserving quaternion structure equates to preservation of the metric
signature (+,-,-,-).

The motion of a mass-less point in a gravitational field satisfies the
geodesic equation(s)

P, a dTu dz,
ds?2 E# VFMV ds ds

where the I's satisfy the field equation(s)

ore

9guv

S S 4 5, 5T, = 0 amd Det(gy,,) = —1, where T, = ~ 38997 (%2 4 %0

6% axa Bacu

(See Schwarzschild[1916])

The condition that the determinant Det(g,,) = —1, requires that a so-
lution to the field equation(s) has a symmetric bi-linear representation (g, )
with determinant=-1.

For the diagonal matrix above, this implies that I1,|Daqo| = 1.

Let {1, e,, ey, e,} be a quaternion basis with multiplication table,

X 1 €y €y ey
1 1 ey e, ew

e, e | —1 | e, | —€y
e, ey | —ey| —1 | e
ey lew!| e | —e,| —1

OJzg

).



Then ds? ~ dS?

:<dt du dv dw)

:(dt du dv dw

g(dt du dv dw

(%
IF
)
git
0
) o
0

2y11 0 0
0 <a%’ %}eueu 0
0 0 <%, %)evev
0 0 0
211 0 0
0 ||%||Qeueu 0
0 0 175 IPeves
0 0 0 gyl
0 0 0 dt
Guu 0 0 du
0 gw O dv
0 0 Guww dw

where (-,-) is the Euclidean metric in R* and g has signature (+-,-,-).

We can describe R* in polar coordinates and get a metric analogous to
the Robertson-Walker metric for spherical coordinates:

Let

Using the chain rule:

x = Rcosy

y = Rsinyxcost

z = Rsinysinfcoso
n = Rsinysinfsing
ozr 0 oy 0 0z 0
ORdr ' ORdy = ORIz
or 0 0y d 0z 0
oxox " oxoy oxoz
or 9 0Oyd 0z09
900z ' 9009y ' 000z
dr 0 0Oy o0 0z 0
990x " 0pdy ' 9902

on 0
dR dn
on 0
dx o
on 0
96 on
on 0
96 dn

dt
dx
dy
dz



Now, %, a%, %, 5% are orthogonal unit vectors in R* so

o 0
22y =1
<8R’8R>
o0 0
— 2\ = R2
(552
o 0 .
59280 = R%sin’x
<(§;’ i) = RZ%sin*ysin’0
So, ds? ~ dS?
(2, 7)1 ) 80 0 0 dR
0 (50> 50 exe 0 0 dy
- X7 Ox/7XTX
( dR dx df do¢ ) 0 0 (2. 2 Vegeq ; ao do
0 0 0 <%,% e¢e¢ d¢
1 0 0 0 R
0 —R%1 0 0
- ( ARt dx df d¢> 0 0 —R?sin?y1 0
0 0 0 —R?sin?ysin?61

We can also describe R* in (pseudo)-polar coordinates and get a metric
analogous to the Robertson-Walker metric for hyperbolic coordinates:

Let
x = Rcoshy
y = Rsinhyxcosf
z = Rsinhysinfcoso
n = Rsinhysinfsing
Using the chain rule:
0 dxr 0 oy 0 0z 0 on 0

OR 9ROz  OROy 0ROz 9ROy



0 _ w0 o 020, ;D
dx  OxO0x Oxdy Ox0z OxO0n
0 _ 000 o 0:0 o
00  000x 000y 000z 000
o _ om0 g0 0:0 o
dp  0p0ox 09Oy 0p0z 0pOn
Now, %, a%, %, 5% are orthogonal unit vectors in R* so
o 0
<£a @) =1
o 0 9
o 0 .
(%, %) = RZ%sinh*y
((;Z), (;1) = R%sinh*ysin?6
So, ds? ~ dS?
(. )11 0 0
0 (2 9e e 0
=(dR dx db d O O XX
( X ¢ ) 0 0 <% %>ege9
0 0 0 (%
1 0 0 0
0 —R%1 0 0
o ( It dx  do d¢> 0 0 —R2sinh?x1 0
0 0 0 —R?sinh?ysin?01

The above two are not metrics for Robertson-Walker space-time unless
Rcosy in the first and Rcoshy in the second were proxies for time which

they are not.

A theorem in Differential Topology states that an m dimensional man-
ifold can be parameterized by up to 2m variables. In Schwarzschild coor-
dinates t, R, 0, ¢ (which describe a spherically symmetric gravitational field):

10

dR

dx
do



z = z(t,R,0,9)

y = y(t,R,0,9)

z = z(tR,0,0)

n = n<t7R79a¢)

§ = &(t,R,0,9)

Using the chain rule:

9 _ 020 g0 9:0 o 00
ot O0tdx  Otdy Otdz Otom T Ot o
O _ om0 oyd 020 mo %0
OR  OROx 0ROy OROz OROnp '~ OROE
0 _ om0 g0 020 mo 00
o0  000xr 000y 000z 000y T 000
0 dr 0 0y 9 029  Ind o¢ 9

96~ 060z 060y  990: 0oy T apoe

Now, 8%, 8%, %, 8%, e a% are orthogonal unit vectors in R" (5 < n < 8)

SO

ds® ~ dS?
(2, 9)11 2 ao> 0 0 dt
B 0 R’ OR €Rer 0 0 dR
= (dt dr do do ) 0 0 (2. 2regey 0 d
0 0 0 (35> 55)€480 do
(1-9)1 0 0 0 dt
- 0 -1-%"11 0 0 dR
=(dt dr o do ) 0 0 ~R1 0 do
0 0 0 —RZ%sin%61 do
where @ = 26M R = (r3 + a3)1/ 3 and r is the Euclidean radius

C
r = a2+ y?+ z2. In this case, (-,-) is the Euclidean metric in R" and
the latter equality was proved by Schwarzschild. The space R"™ may or may

11



not have physical 'reality’ but here is simply a parameter space.

The equation from SR

E?/c? —p2 — pg — p2 = m2c? can be written as
11 0 0 0 E/c
0 ii 0 D
2,21 _ T
mcl—(E/c Pz Dy pz) 0 0 3 0 Dy
0 0 0 kk D2
and generalized to
m2c?1
(1-%0n 0 0 0
B 0 —(1-%""1 0 0
_(E/C Pr Do p¢> 0 0 _R21 0
0 0 0 —R?sin?61
Then

m2ct = (1 — %)E2 - (1- %)*1021921% — R262p§ - R2sin2002p3§
Though a 4-vector (A%, A, A%, A3) is frame dependent, the 4-vector mag-

nitude ||A|| is preserved. It is for this reason the speed of light is an invariant.
The traditional way of expressing this idea is

_ —0
1A]]? = gapA® AP =g, AVA”.
For an object hovering in a gravitational field at radius R,

2
E =+ We can regard this as the energy in a bound system so
VI-&

we use the negative. Then £ = —

m02

1—

o
R

The energy that must be applied to remove the hovering mass to ’'infin-
ity’ along a radial line must be

2

mc 1

o n2(1
= me(1 ==
energy in General Relativity.

Es = mc?— ) which is the gravitational binding

12
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This value is asymptotically equivalent for large R to the traditional
Newtonian potential — GM ™ and they are approximately equal for R > 50a.

For an object at constant R and angular velocity p,/mR in a gravita-
tional field

m?c? = (1 - $)E?/c? — p§R2sin29

E*/ = (1 - %) (m*¢ + p, R*sin*0)

E= \/ L(m2ct + pic? R2sin?0)

For an object falling along a radial line with speed pr/m
mic? = (1= {)B*/c* = (1= {) "'k

m2c? + (1 — %)*1]9% =(1- %)E2/62

(1- %)E2 =m?ct + (1 - %)_16219%

E= \/ )7im2et + (1 — §)~2c2p%

and combining the two above cases

E= \/ “L(m2ct + pi 2 R2sin?0) + (1 — §)~2cpy

The geodesic equations

%[Qu Cifs | = %Zg?:oﬁzgﬂ dj; d’f; for 0 < ¢ < 3 give the geodesic equations

of motion with respect to the arclength parameter s.

Oog;j = 0 for all j so goo% = constant = H where H is the total energy
and can be identified as the Hamiltonian of the system.

03g;; = 0 for all j so g33% = constant = L where L is the angular
momentum.

The gravitational field is spherically symmetric so we can transform the
angle coordinates to our convenience. So, letting 6 = 7/2 we have

13



da3 2 d
9335 =R

-

=L

Q

S

For convenience in what follows let kg =1 — 5

For a unit mass following a geodesic path

D= Aty 4+ Bop + D9y + 20,

The inner product 1 = ( Z—Z, Z—Z)

= (§)2(00,00) + (4)*(0r. Or) + (£)?(99,09) + (§2)*(9: 05)
= (H/kg)?*kr — (F)?rg" — (2)°R?

= W2 — (g — ()R = Wy — ()5 — o
Then

Hzﬁ 1+(dR)2 ]—%1 IL?;
H? =rp+ ()2 + %R%

So, the energy equation is:

H? = (§0)° + wr(1+ o)

We set V(R):mR(1+IL%—§):1—%-1—1%—O‘fL2

It depends only on R since L is a constant of the motion and V(R) acts
as the effective potential for H2.

The graph below shows a generic plot for —V and —H? as functions of R.
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M2 s

—V — —1 as R — oo so there are three cases:

(1) The body orbits the central gravitating body and its radius R varies
between a minimum and maximum. —H? < —1

(2) The body has exactly escape velocity and —H? = —1

(3) The body has greater than escape velocity and is unbounded with
—H? > 1

A body of unit mass starting at rest arbitrarily far from the center of
symmetry and free falling along a radial line begins with H? = 1 (using
units where ¢ = 1).

: : : dR dR
At R its speed is given by 1 = (W)Q +1—-%. As R — q, (E)Q — 1.
That is, the speed approaches c. We can also compute escape velocity at
R. (%)2 =5 = % and it follows that %(%)2 = % which is nearly the
Newtonian value %(g{)? = % except R = (13 + o)1/,
Preservation of Quaternion Structure:

In general, we can say that relativity theory is essentially a theory about
how Nature preserves Quaternion structure in its operations. For example,
the energy-momentum 4-vector behaves as a contravariant vector where the
preservation of its magnitude-squared E?/c? — p? — p3 — p% with respect
to different coordinates systems represents the preservation of quaternion

15



structure. However, it should be noted that not all pairs of coor-
dinate systems have a metric preserving transformation linking
them.

Consider the metric representation

dr?

= (1—‘2—?)dt2—§dR2—p2d92—(R2+a2+ §hio ) sin?0d?+ 22850 i

p2sin20

with o = ﬁ where J is the angular momentum; p?> = R? + o?cos?6

where R is the area radius; and A = R?> — aR + o?

This is called the Kerr metric and describes space-time in the vicinity of
a rotating axially symmetric gravitational body.

We can see that due to the presence of the term dtd¢, this metric is not
in orthogonal form. To find a parameterization we would first need to put

the matrix
(-2 o o g
2
0 -5 0 0
0 0 —p? 0
aBosn®® 00 (R4 o+ g )sin’g

in diagonal form. However, for small M we can neglect the o term and
get the metric representation

dr® = dt? — 5 dR? — p*df? — (R + a?)sin0d¢’

with the matrix

1 0 0 0
0 r 0 0 o(t,z,y,z) 1T O(t,x,y,z)
O R26a2 p2 0 - [8(t’R’97¢)] a(th79a¢)

0 0 0 (R*+ a?)sinf

using the parameterization

16



x = VR?+ a?sinfcoso
= VR?+ a?sinfsing

= Rcosf
That is,
121* o 0 0 1 0 0 0
o 2
0 ligglP 0 0 0 7w 00
0 0 Ilzll 0 0o 0 p 0
0 0 0 lglP 0 0 0 (R2+a?)sin0

A metric representation in matrix form with real entries

goo Ygoi1 go2 9o3s
gio 911 gi12 913
920 G921 922 923
g30 931 g32 933

must be symmetric since it defines a symmetric bilinear form. A standard

result in linear algebra is that real symmetric matrices can be diagonalized.
For a smoothly varying metric representation there must be a smoothly
varying orthogonal () such that

go O 0 0 goo go1 gGo2 903
0 gn 0 0 |_ or | 9o g 92 g |
0 0 gy O 920 921 Gg22 923 ’
0 0 0 gi g30 931 932 933

If ¢’ has signature (+,-,-,-) then there is a quaternion basis {1, e, ez, e3}

in the coordinates of ¢’ so that

gl 0O 0 0
0 ¢yl 0 0
0 0 gl O
0 0 0 gl
201 0 0 0 r
Oz
_ 0 llgZller 0 0
0 0 llgZllee 0
0 0 0 llzZlles

17



0
521 ao 0 0
y 0 152 [[e1 8o 0
0 0 152 |le2 0
0 0 0 1 52-les

where the -2-; w=0,1,2, 3 are the coordinate tangent vectors.
Oz,

The symmetric bilinear form for the Kerr metric

(-2 o0 o gt
K= 0 & 0 O
0 0 —p? 0
aRolzoszinQO 0 0 f(RQ + o? -+ pggg;e)si?’ﬂe
A 0 0 FE
. 0 B 0 0
we can write as K = 00 C 0
E 0 0 D

The eigenvalues for K are A = (ATD)Ey (2A_D)2+4E2 ,B,C.

Then the diagonal bilinear form for the Kerr metric is

(A+D)++/(A—D)2+4E?

- 0 0 0
0 B 0 0
T _
QK@= 0 0 C 0
0 0 0 (A+D)—+/(A—D)2+4E2
2

B < 0 and C < 0 so quaternion structure is preserved if

(A+ D)+ +/(A— D) + 4E2 -

0
2

and

(A+D)— /(A=— D2+ 4E?
5 <

0

The Minkowski Metric (continued):

18



1 0 0 O
We denote /g = 8 (1) ? 8
0 0 0 k

Then the Minkowski metric can be written

g(V', V') = (,/gV)T\/gV’ where V' is a vector in the tangent space
expressed in Minkowski coordinates.

Let (¥,u,v,w) be alternate coordinates, not necessarily isometric to
Minkowski coordinates.

1211 80 0 0
0 llggllew 0 0
We denote /g’ = Iu
0 0 5lles )0
0 0 0 llgzllew

Then ¢'(V,V) = (vVg'V)Ty/g’V where V is the 4-vector V' in the al-
ternate coordinates. The invariance of the 4-vector magnitude requires that
g(V', V') = ¢'(V,V). That is,

1 0 0 0 Vo
0 -1 0 0 Vi
2 10 11 12 13
viE=(ve vt v ve Ly 0 g || e
0 0 0 -1 V3
12121 0 0 0
0 —Il%1IF1 0 0
_ 0 1 2 3 du )
(veviv )l 0 2P o
0 0 0 —[|2 |1

We can also write the above equation(s) as
HVH2 _ (V/01)2 + (Vlli + V/2j + V/3k)2
= (Vg l10)% + (VMg llew + V2 g llew + V2 g llew)

Footnote*:
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Using the transformation

At cosh(a) sinh(a) 0 O At
Az" | | sinh(a) cosh(o) 0 0 Ax
Ay | T 0 0 10 || Ay
A7 0 0 0 1 Az

we can derive formulas for velocity addition and the relativistic Doppler ef-
fect:

Let S, S’, S” be frames moving with uniform velocity along the x-
direction. Let S’ be moving with velocity v with respect to S and S” be

moving with velocity w with respect to S’. First note that iﬂggg = v and

sinh(f) _ w. Then

cosh(B)
At” cosh(a) sinh(a) 0 0 cosh(B) sinh(B) 0 0O At
Az" | | sinh(a) cosh(a) 0 0 sinh(B) cosh(B) 0 0 Ax
Ay | T 0 0 10 0 0 10 || ay
Az’ 0 0 0 1 0 0 0 1 Az

cosh(a)cosh(B) + sinh(a)sinh(B) cosh(a)sinh(B) + sinh(a)cosh(B)
| cosh(a)sinh(B) + sinh(a)cosh(B) cosh(a)cosh(B) + sinh(a)sinh(S3)
0 0
0 0
cosh(a+ p) sinh(a+£) 0 0 At
| sinh(a+pB) cosh(a+p5) 0 0O Az
- 0 0 10 Ay
0 0 0 1 Az

The combined velocity is

sinh(a+B) _ cosh(a)sinh(B)+sinh(a)cosh(B)
cosh(a+B) ~ cosh(a)cosh(B)+sinh(a)sinh(B)

cosh(a)cosh(B) gives the combined velocity

and dividing top and bottom by

sinh(a+B) _ v4w
cosh(a+pB) — l4+vw’

Now consider a pulse of light with wavelength measured at S to be A,
and travelling in the direction of increasing x. Measured w.r.t. S, one
cycle completes in At. The distance of the next wave front from O’ is
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A + vAt = At. Then At = 2=, Then

1-v-*
At cosh(a) sinh(a) 0 O At
0 | | sinh(a) cosh(a) 0 O 0
0 N 0 0 10 0
0 0 0 0 1 0

A e _ 1+v cosh(a)+sinh(a
S0, Ao = At' = coshﬁa) = (I=v)cosh(a) Ae lJ—rv = Ae W where

Ao i the observed wavelength.
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Text is available under the Creative Commons Attribution-ShareAlike
License (https://creativecommons.org/licenses/by-sa/4.0/)
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