
The Schwarzschild Metric

Our current formulation of the spherically symmetric solution around a
gravitating body is:

ds2 = (1− rs/r)dt2 − (1− rs/r)−1dr2 − r2dΩ2

where c is set at 1, t is the elapsed time of a clock ’at infinity’, r is the scalar
distance, rs is the ’event horizon’ radius 2GM , and dΩ2 = dθ2 + sin2θdφ2

In Schwarzschild’s original paper from 1916 he does not use r the same
way. His equation is:

ds2 = (1− α/R)dt2 − (1− α/R)−1dR2 −R2dΩ2

where α = 2GM , R = (r3 + α3)1/3 and r =
√
x2 + y2 + z2 is zero at the

center of symmetry (the origin). R =
√

A
4π is the area radius of a sphere

centered at r = 0. If r is the Euclidean distance we could have R < r (pos-
itive spatial curvature), R = r (zero spatial curvature), or R > r (negative
spatial curvature). In our case here we have R > r which implies negative
spatial curvature. One implication is that the event horizon at α gets re-
moved which affects the theory of black holes.

If we set
dσ2 = R2dΩ2 = R2(dθ2 + sin2θdφ2)

we get a metric on the 2-sphere of radius R = (r3 + α3)1/3 where r as
before is the scalar radius. From this we can compute that the circumfer-
ence C = 2πR = 2π(r3 + α3)1/3 > 2πr and the surface area A = 4πR2 =
4π(r3 + α3)2/3 > 4πr2. This can only happen if space itself is negatively
curved. Not only is space-time curved but space itself is curved negatively.
That is, (r3 + α3)2/3/r2 →∞ as r → 0.

Considering space as a foliation of 3D ”hyperboloids” (indexed by α)
given by

u = (r3 + α3)1/3sinθcosφ
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v = (r3 + α3)1/3sinθsinφ

w = r

where r > 0, 0 < θ < π and 0 ≤ φ < 2π. The angle θ is the amount of
deflection from the polar axis and φ is the longitudinal angle. Each leaf in
the foliation has a metric

ds2 = ((R3 − α3)−4/3R4 + sin2θ)dR2 +R2(cos2θdθ2 + sin2θdφ2)

with R = (r3 + α3)1/3.*

If we set θ = π
2 then {((r3 + α3)1/3, π2 , φ) : r > 0 and 0 ≤ φ < 2π} is a

2-surface of revolution with

u = (r3 + α3)1/3cosφ

v = (r3 + α3)1/3sinφ

w = r

as shown in the following figure

We can easily compute its Gaussian curvature K at r = α:

For the 1st fundamental form:

E = (r3 + α3)2/3
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F = 0

G =
r4

(r3 + α3)4/3
+ 1

and the 2nd fundamental form:

e = − (r3 + α3)1/3√
r4

(r3+α3)4/3
+ 1

f = 0

g =
2r(r3 + α3)2/3 − 3r4(r3 + α3)−1/3

(r3 + α3)4/3
/

√
r4

(r3 + α3)4/3
+ 1

κ1 = g/G and κ2 = e/E

At r = α, κ1 = g/G = 2r(r3+α3)2/3−2r4(r3+α3)−1/3

(r3+α3)4/3
/
(

r4

(r3+α3)4/3
+ 1

)3/2

= 2α(2α3)2/3−2α4(2α3)−1/3

(2α3)4/3
/
(

α4

(2α3)4/3
+ 1

)3/2

= 2(2)2/3−2(2)−1/3

α(2)4/3
/
(

1
(2)4/3

+ 1
)3/2

> 0

= 4−2
α(2)5/3

/
(

1
(2)4/3

+ 1
)3/2

> 0

At r = α, κ2 = e/E = − (r3+α3)1/3√
r4

(r3+α3)4/3
+1
/(r3 + α3)2/3

= − (2)1/3√
1

(2)4/3
+1
/22/3α < 0

So, at r = α, K = κ1κ2 < 0 which shows the surface is negatively
curved**.

The uniqueness of the Schwarzschild (1916) solution arises directly out
of the equations themselves and does not depend on an external theorem to
guarantee uniqueness. His derivation implies that space is negatively curved.

The term α arises as a constant of integration in the 1916 derivation so
we must compute it empirically.
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The author in [Sch 1916] derives φ̇2 = α/2(r3 + α3) = α/2R3

The equation 2φ̇2R3 = α imposes a constraint on φ̇ given R (and im-
plicitly r) similar to Kepler’s 3rd law: T 2 = Kr3. For a circular orbit,
K = 4π2/GM

We can rewrite Kepler’s 3rd law as (2π/φ̇)2 = Kr3 and then 8π2/K =
2φ̇2r3

So, we have

2φ̇2r3 = 8π2/K (1)

2φ̇2R3 = α (2)

with equation (1) being Kepler’s 3rd law and equation (2) being the rel-
ativistic counterpart.

Since α is a constant we have R/r → 1 as r → ∞. Then αK/8π2 = 1
and so α = 8π2/K = 2GM presumably in units where c = 1.

Let A = (A0, A1, A2, A3) be a 4-vector with pseudo-norm

||A|| = (A0)2 − (A1)2 − (A2)2 − (A3)2

which can be expressed as

||A|| =
(
A0 A1 A2 A3

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



A0

A1

A2

A3


Suppose A is Lorentz invariant. Then

||A|| =
(
A0 A1 A2 A3

)
Λ−1


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

Λ


A0

A1

A2

A3


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Let A be expressed in spherical coordinates A‘ = (A‘0, A‘1, A‘2, A‘3) with
the transformation 

A0

A1

A2

A3

 = M


A‘0

A‘1

A‘2

A‘3



Then

||A|| =
(
A‘0 A‘1 A‘2 A‘3

)
MT


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

M

A‘0

A‘1

A‘2

A‘3


and

||A|| =
(
A‘0 A‘1 A‘2 A‘3

)
1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −r2sin2θ



A‘0

A‘1

A‘2

A‘3


A 4-vector of interest is (E2/c2, P 2

x , P
2
y , P

2
z ) with pseudo-norm m2c2

It can be written asm2c2 =
(
E/c Px Py Pz

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



E/c
Px
Py
Pz


and expressing this in spherical coordinates

m2c2 =
(
E/c Pr Pθ Pφ

)
1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −r2sin2θ



E/c
Pr
Pθ
Pφ


Gravity induces a perturbation of the metric giving us

m2c2 =
(
E/c Pr Pθ Pφ

)
(1− α

R) 0 0 0
0 −(1− α

R)−1 0 0
0 0 −R2 0
0 0 0 −R2sin2θ



E/c
Pr
Pθ
Pφ


and given that ∂r and ∂R are colinear (hence Pr = PR), therefore
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m2c2 = (1− α
R)E2/c2 − (1− α

R)−1P 2
R −R2P 2

θ −R2sin2θP 2
φ

For an object hovering in a gravitational field at radius R

m2c2 = (1− α
R)E2/c2

E2/c2 = (1− α
R)−1m2c2

For an object at constant R and angular velocity (Pφ/m)R2 in a gravi-
tational field

m2c2 = (1− α
R)E2/c2 − P 2

φR
2

E2/c2 = (1− α
R)−1(m2c2 + P 2

φR
2)

For an object falling along a radial line with speed PR/m

m2c2 = (1− α
R)E2/c2 − (1− α

R)−1P 2
R

m2c2 + (1− α
R)−1P 2

R = (1− α
R)E2/c2

(1− α
R)E2 = m2c4 + (1− α

R)−1c2P 2
R

E2/c2 = (1− α
R)−1(m2c2 + (1− α

R)−1P 2
R)

and combining the two above cases

E2/c2 = (1− α
R)−1(m2c2 + (1− α

R)−1P 2
R + P 2

φR
2)

The energy that must be applied to remove the hovering mass to ’infin-
ity’ must be the negative of

E∞ = mc2− mc2√
1− α

R

= mc2(1− 1√
1− α

R

) which is the gravitational binding

energy in General Relativity.

This value is asymptotically equivalent for large R to the traditional
Newtonian potential −GMm

R and they are approximately equal for R > 50α.

To calculate E in the above cases we take the negative square root for a
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bound test particle m and positive for the unbound. That is based on the
convention that gravitational binding energy is negative.

We can easily see that the above formula for E∞ refutes the cult-like
dogma of Black Hole event horizons. For, a particle falling towards the
gravitating center gains infinite energy which, having fallen through the
event horizon, is transferred to the mass of the gravitating body. Even one
atom falling through the event horizon gives the Black Hole infinite mass.

The Energy Equation:

It can be shown that E = (1− α
R)dt/ds and L = R2dφ/ds are constants

of the motion and are designated energy and angular momentum respec-
tively.

It can also be shown that The Energy Equation*** satisfies

E2 = (dR/ds)2 + (L2/R2)(1− α
R).

The Speed of Light in a Gravitational Field:

Radial:

Setting L = 0 above we have E2 = (dR/ds)2.

Then (1− α
R)2dt2/ds2 = dR2/ds2.

That is, (1− α
R) = dR/dt.

Angular:

Setting dR/ds = 0 in the energy equation gives

(1− α
R)2dt2/ds2 = R2(dφ2/ds2)(1− α

R)

Then (1− α
R) = R2dφ2/dt2

Then
√

(1− α
R) = Rdφ/dt
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In both cases, relative to a clock ’at infinity’, the speed of light appears
slower in the gravitational field.

Photo-spheres:

From above we have R2φ̇2 = (1− α
R) and from Sch[1916], φ̇2 = α

2R3 .

Then α
2R = (1− α

R) and R = 3
2α.

At such a radius photons can be trapped in an orbit around a mass con-
centrated at (or near) the origin.

The Kruskal Extension:

We have seen above that the area radius R→ α as r → 0

This implies that the ratio of the surface areas 4πR2

4πr2
→∞ as r → 0

We saw above that this is easily accounted for by the negative curvature
around the central mass (there assumed to be concentrated at r = 0).

There is another interpretation that leads to the cult-like dogma of Black
Hole event horizons.

Suppose we let r take on negative values so that R = 0 when r = −α.
Then r =

√
x2 + y2 + z2 < 0 which implies imaginary values for the Carte-

sian coordinates x, y, z.

The Black Hole event horizon is at r = 0 where R = α. In this view the
central mass is concentrated at R = 0, that is at r = −α, which, though
a point at the center of symmetry, has extension in imaginary space =
span{ix, iy, iz}

For R < α, that is for r < 0, the three dimensions of space become
time-like and the one dimension of time becomes space-like.

If we allow R < 0 then we encounter the idea of space-time wormholes,
interesting for science fiction but not for actual science.
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Kruskal coordinates are defined as follows:

Setting α = α = 2GM , the Schwarzschild coordinates t, R, θ, φ are trans-
formed by

T = (Rα − 1)1/2eR/2αsinh( t
2α)

X = (Rα − 1)1/2eR/2αcosh( t
2α)

Then the Schwarzschild metric representation is transformed to

ds2 = 4α3

R e−R/α(dT 2 − dX2)−R2dΩ2.

Those devoted to Black Hole event horizons speak of an inside where
0 < R < α and an outside α < R. However, there is no inside since
R = (r3 + α3)1/3 > α unless, as indicated above, r is allowed to become
negative.

A trick that is used involves replacing R with r and pretending it is still
a solution to the field equations of GR. Then one can speak about an inside
0 < r < α and an outside α < r without requiring that r become negative.

The figure below shows the relation between r and R. The black graph
shows the Schwarzschild solution (when vertical axis is at r = 0). The red
graph shows the Kruskal extension (when vertical axis is at r = α).
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All observable phenomena for R > α only require for their explanation
the Schwarzschild solution (the black part of the graph). The red part of
the graph, even if mathematically valid, is not required to explain any phys-
ically observable phenomena and therefore counts as inventing unnecessary
entities - a violation of Occam’s Razor.

So, what exactly is a Black Hole? Imagine that a star, after depleting
its nuclear fuel, can no longer resist the compression effect of its own gravi-
tation and shrinks down to some limiting density at r = ε. Its scalar radius
is r = ε but negative curvature exaggerates its area radius Rε = (ε3 +α3)1/3

where α = 2GM . It would still emit black body radiation depending on
its temperature but that would be red-shifted, perhaps extremely so, and
dim making it appear as a black disk. This would be due to two processes.
The first would be time dilation. The second would be reduction in elec-
tromagnetic flux because of the extreme negative curvature. If you were to
observe it from outside any of its photo-spheres and against a background
of stars, you would observe a black disk if its emitted radiation were suffi-
ciently red-shifted and the flux sufficiently reduced. If you were to observe a
spacecraft falling towards it emitting a signal at regular time intervals then
to you, the outside observer, such intervals would get stretched out due to
time dilation. The falling spacecraft, if it could not escape, would eventu-
ally crash into the mass at the center. It would not cross a fictional ’event
horizon’ before crashing into the center. Before crashing into the central
mass the light from the compressed star would become more visible to the
falling spacecraft due to the reduction in red-shift.

We propose as a definition for a Black Hole a mass compressed into a
space smaller than its photo-sphere. That is, letting ε= the scalar radius of

the central mass, Rε = (ε3 + α3)1/3 < 3
2α. Then ε <

3√19
2 α ≈ 1.334α.

The idea that there are values of R = (r3 + α3)1/3 < α is a mistaken
one because r =

√
x2 + y2 + z2 ≥ 0 and α = 2GM > 0. Such an ongoing

conceptual error leads to the idea of a Black Hole event horizon that has be-
come a major defect in modern astrophysics. Perhaps for some who should
know better, the idea of a Black Hole event horizon has become too good a
joke to spoil!

* Footnote: Foliation of ”Hyperboloids”:
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As stated above, space around a non-rotating gravitational body can be
viewed as a foliation of ”hyperboloids”

u = Rcosφ = (r3 + α3)1/3cosφ

v = Rsinφ = (r3 + α3)1/3sinφ

w = r

where α ≥ 0, r > 0, and 0 ≤ φ < 2π. The angle φ is the longitudi-
nal angle. Each ”hyperboloid” in the foliation is a surface of revolution of
(r3 +α3)1/3 about the r axis. Each leaf in the foliation (indexed by α) has a
surface metric dS2 = ((R3−α3)−4/3R4+1)dR2+R2dφ2 with R = (r3+α3)1/3

and θ = π
2 . They are surfaces of revolution around the r-axis each deter-

mined by the parameter α = 2GM . So, around a given gravitating body
there is a unique α but the polar axis is arbitrary since the body does not
rotate.

Wormholes: A Potential Gravitational Anomaly

In the foregoing, we have shown that there is no coordinate singularity
corresponding to an event horizon around a gravitating body. A gravitat-
ing body has one singularity at the origin (the nullpunkt)as Schwarzschild
vigorously emphasized (See Schwarzschild [1916]).

However, suppose there is no gravitating body causing the gravitational
field. At first this seems bizarre if not impossible. Nevertheless, the math-
ematics allows for it. In the derivation of the metric which bears his name,
Schwarzschild found a constant of integration ρ. The constant correspond-
ing to the Schwarzschild radius he called α. He reasoned that in order for
the singularity to be at the origin we must have ρ = α3. In other words,
what we assign to ρ determines where the singularity will be.

As a disclaimer, we emphasize that in the following we are discussing an
artifact of the mathematics without, necessarily, any physical reality.
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Letting ρ = 0 we get a coordinate singularity at r = α with R =
((r− α)3 + α3)1/3 for r > 0. With α = 2 and R = −(−(r− α)3 + α3)1/3 for
r < 0 we get the graphs

A unit mass would fall towards a (non-existent) Schwarzschild mass of
M = α/2G and encounter three singularities before emerging out the other
side where R < −α. Whether indeed such an entity could have physical
existence we cannot verify without falling through one. From the outside
it would appear as though an actual mass were present causing the gravity.
A clock on a body falling into one would have no different behavior than
a clock falling toward an actual gravitating mass. In both cases the clock
would appear from the outside to slow down and approach a full stop as it
got closer to r = α (wormhole) or r = 0 (gravitating body).

Mathematically speaking, a geodesic cannot cross a singularity. A coor-
dinate transformation cannot fix this by removing the singularity without
destroying the original metric which is a solution to the field equation(s).

** Footnote: Schwarzschild Spatial Curvature

Using the Schwarzschild metric:
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g =


1− α/R 0 0 0

0 −(1− α/R)−1 0 0
0 0 −R2 0
0 0 0 −R2sin2θ



g =


1− α

(r3+α3)1/3
0 0 0

0 −(1− α
(r3+α3)1/3

)−1 0 0

0 0 −(r3 + α3)2/3 0

0 0 0 −(r3 + α3)2/3sin2θ


We are interested here only in the spatial curvature so we take g to be

g =

 (1− α
(r3+α3)1/3

)−1 0 0

0 (r3 + α3)2/3 0

0 0 (r3 + α3)2/3sin2θ


Γkij = 1

2g
km(

∂gjm
∂xi

+ ∂gim
∂xj
− ∂gij

∂xm )

To determine the spatial curvature we only need concern ourselves with
1 ≤ i, j, k ≤ 3

Suppose i, j, k are all distinct. Then

2Γkij = gk1(
∂gj1
∂xi

+ ∂gi1
∂xj
− ∂gij
∂x1

)+gk2(
∂gj2
∂xi

+ ∂gi2
∂xj
− ∂gij
∂x2

)+gk3(
∂gj3
∂xi

+ ∂gi3
∂xj
− ∂gij
∂x3

)

2Γkij = gk1(
∂gj1
∂xi

+ ∂gi1
∂xj

) + gk2(
∂gj2
∂xi

+ ∂gi2
∂xj

) + gk3(
∂gj3
∂xi

+ ∂gi3
∂xj

)

and since gµν = 0 when µ 6= ν

2Γ1
ij = g11(

∂gj1
∂xi

+ ∂gi1
∂xj

) = 0 since i, j, k are distinct.

2Γ2
ij = g22(

∂gj2
∂xi

+ ∂gi2
∂xj

) = 0

2Γ3
ij = g33(

∂gj3
∂xi

+ ∂gi3
∂xj

) = 0

So, we only need concern ourselves where at least two of the indices are
the same.

Case 1: k = i:

2Γiij = gim(
∂gjm
∂xi

+ ∂gim
∂xj
− ∂gij

∂xm )
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= gi0(
∂gj0
∂xi

+ ∂gi0
∂xj
− ∂gij

∂x0
) + gi1(

∂gj1
∂xi

+ ∂gi1
∂xj
− ∂gij

∂x1
)

+gi2(
∂gj2
∂xi

+ ∂gi2
∂xj
− ∂gij

∂x2
) + gi3(

∂gj3
∂xi

+ ∂gi3
∂xj
− ∂gij

∂x3
)

2Γ1
1j = g11(

∂gj1
∂x1

+ ∂g11
∂xj
− ∂g1j

∂x1
)

So,

2Γ1
11 = g11(∂g11

∂x1
+ ∂g11

∂x1
− ∂g11

∂x1
) = g11(∂g11

∂x1
)) = κ−1

R
α
R2

2Γ1
12 = 2Γ1

21 = g11(∂g21
∂x1

+ ∂g11
∂x2
− ∂g12

∂x1
) = g11(∂g11

∂x2
) = 0

2Γ1
13 = 2Γ1

31 = g11(∂g31
∂x1

+ ∂g11
∂x3
− ∂g13

∂x1
) = g11(∂g11

∂x3
) = 0

2Γ2
2j = g22(

∂gj2
∂x2

+ ∂g22
∂xj
− ∂g2j

∂x2
)

So,

2Γ2
21 = 2Γ2

12 = g22(∂g12
∂x2

+ ∂g22
∂x1
− ∂g21

∂x2
) = g22(∂g22

∂x1
) = 2/R

2Γ2
22 = g22(∂g22

∂x2
+ ∂g22

∂x2
− ∂g22

∂x2
) = g22(∂g22

∂x2
) = 0

2Γ2
23 = 2Γ2

32 = g22(∂g32
∂x2

+ ∂g22
∂x3
− ∂g23

∂x2
) = g22(∂g22

∂x3
) = 0

2Γ3
3j = g33(

∂gj3
∂x3

+ ∂g33
∂xj
− ∂g3j

∂x3
)

So,

2Γ3
31 = 2Γ3

13 = g33(∂g13
∂x3

+ ∂g33
∂x1
− ∂g31

∂x3
) = g33(∂g33

∂x1
) = 2R−1

2Γ3
32 = 2Γ3

23 = g33(∂g23
∂x3

+ ∂g33
∂x2
− ∂g32

∂x3
) = g33(∂g33

∂x2
) = 2cotθ

2Γ3
33 = g33(∂g33

∂x3
+ ∂g33

∂x3
− ∂g33

∂x3
) = g33(∂g33

∂x3
) = 0

Case 2: i = j:

2Γkii = gkm(∂gim
∂xi

+ ∂gim
∂xi
− ∂gii

∂xm )
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= gk0(∂gi0
∂xi

+ ∂gi0
∂xi
− ∂gii

∂x0
)

+gk1(∂gi1
∂xi

+ ∂gi1
∂xi
− ∂gii

∂x1
)

+gk2(∂gi2
∂xi

+ ∂gi2
∂xi
− ∂gii

∂x2
)

+gk3(∂gi3
∂xi

+ ∂gi3
∂xi
− ∂gii

∂x3
)

Then,

2Γ1
ii = g11(∂gi1

∂xi
+ ∂gi1

∂xi
− ∂gii

∂x1
)

So,

2Γ1
22 = g11(∂g21

∂x2
+ ∂g21

∂x2
− ∂g22

∂x1
) = −g11(∂g22

∂x1
) = −2κRR

2Γ1
33 = g11(∂g31

∂x3
+ ∂g31

∂x3
− ∂g33

∂x1
) = −g11(∂g33

∂x1
) = −2sinθcosθ

2Γ2
ii = g22(∂gi2

∂xi
+ ∂gi2

∂xi
− ∂gii

∂x2
)

So,

2Γ2
11 = g22(∂g12

∂x1
+ ∂g12

∂x1
− ∂g11

∂x2
) = −g22(∂g11

∂x2
) = 0

2Γ2
33 = g22(∂g32

∂x3
+ ∂g32

∂x3
− ∂g33

∂x2
) = −g22(∂g33

∂x2
) = −2sinθcosθ

2Γ3
ii = g33(∂gi3

∂xi
+ ∂gi3

∂xi
− ∂gii

∂x3
)

So,

2Γ3
11 = g33(∂g13

∂x1
+ ∂g13

∂x1
− ∂g11

∂x3
) = −g33(∂g11

∂x3
) = 0

2Γ3
22 = g33(∂g23

∂x2
+ ∂g23

∂x2
− ∂g22

∂x3
) = −g33(∂g22

∂x3
) = 0

Summary:

Γ1 =

 1
2(1− α/R)−1 α

R2R
′ 0 0

0 −(1− α/R)RR′ 0
0 0 −sinθcosθ


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Γ2 =

 0 R′/R 0
R′/R 0 0

0 0 −sinθcosθ


Γ3 =

 0 0 R′/R
0 0 cotθ

R′/R cotθ 0


The covariant derivative is ∇ju = ( ∂u

i

∂xj
+ ukΓikj)ei

The second covariant derivative is

∇l∇ju = (
∂( ∂u

i

∂xj
+ukΓikj)

∂xl
+ (∂u

m

∂xj
+ ukΓmkj)Γ

i
ml)ei

= ( ∂2ui

∂xl∂xj
+ ∂uk

∂xl
Γikj + uk ∂

∂xl
Γikj + (∂u

m

∂xj
+ ukΓmkj)Γ

i
ml)ei

Then

[∇l,∇j ]u = (∂u
k

∂xl
Γikj + uk ∂

∂xl
Γikj + (∂u

m

∂xj
+ ukΓmkj)Γ

i
ml

−∂uk

∂xj
Γikl − uk

∂
∂xj

Γikl − (∂u
m

∂xl
+ ukΓmkl)Γ

i
mj)ei

[∇l,∇j ]u = uk( ∂
∂xl

Γikj −
∂
∂xj

Γikl + ΓmkjΓ
i
ml − ΓmklΓ

i
mj)ei

and

[∇1,∇2]u = (∂u
k

∂x1
Γik2 + uk ∂

∂x1
Γik2 + (∂u

m

∂x2
+ ukΓmk2)Γim1

−∂uk

∂x2
Γik1 − uk

∂
∂x2

Γik1 − (∂u
m

∂x1
+ ukΓmk1)Γim2)ei

= (uk ∂
∂x1

Γik2 + ukΓmk2Γim1 − uk ∂
∂x2

Γik1 − ukΓmk1Γim2)ei

= uk( ∂
∂x1

Γik2 −
∂
∂x2

Γik1 + Γmk2Γim1 − Γmk1Γim2)ei

[∇1,∇3]u = (∂u
k

∂x1
Γik3 + uk ∂

∂x1
Γik3 + (∂u

m

∂x3
+ ukΓmk3)Γim1

−∂uk

∂x3
Γik1 − uk

∂
∂x3

Γik1 − (∂u
m

∂x1
+ ukΓmk1)Γim3)ei

= (uk ∂
∂x1

Γik3 + ukΓmk3Γim1 − uk ∂
∂x3

Γik1 − ukΓmk1Γim3)ei
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= uk( ∂
∂x1

Γik3 −
∂
∂x3

Γik1 + Γmk3Γim1 − Γmk1Γim3)ei

[∇2,∇3]u = (∂u
k

∂x2
Γik3 + uk ∂

∂x2
Γik3 + (∂u

m

∂x3
+ ukΓmk3)Γim2

−∂uk

∂x3
Γik2 − uk

∂
∂x3

Γik2 − (∂u
m

∂x2
+ ukΓmk2)Γim3)ei

= (uk ∂
∂x2

Γik3 + ukΓmk3Γim2 − uk ∂
∂x3

Γik2 − ukΓmk2Γim3)ei

= uk( ∂
∂x2

Γik3 −
∂
∂x3

Γik2 + Γmk3Γim2 − Γmk2Γim3)ei

We assume unit basis vectors in the direction of the orthogonal coordi-
nates r, θ, φ where R = (r3 + α3)1/3 and compute the components of the
scalar curvature where

S = 2Σi<j〈[∇i,∇j ]ei, ej〉

〈[∇1,∇2]e1, e2〉 = 〈( ∂
∂x1

Γi22 − ∂
∂x2

Γi21 + Γm22Γim1 − Γm21Γim2)ei, e2〉

= ( ∂
∂x1

Γ2
22 − ∂

∂x2
Γ2

21 + Γm22Γ2
m1 − Γm21Γ2

m2)〈e2, e2〉

= ( ∂
∂x1

Γ2
22 − ∂

∂x2
Γ2

21 + Γm22Γ2
m1 − Γm21Γ2

m2) = 0

〈[∇1,∇3]e1, e3〉 = 〈( ∂
∂x1

Γi33 − ∂
∂x3

Γi31 + Γm33Γim1 − Γm31Γim3)ei, e3〉

= ( ∂
∂x1

Γ3
33 − ∂

∂x3
Γ3

31 + Γm33Γ3
m1 − Γm31Γ3

m3)〈e3, e3〉

= ( ∂
∂x1

Γ3
33 − ∂

∂x3
Γ3

31 + Γm33Γ3
m1 − Γm31Γ3

m3) = 0

〈[∇2,∇3]e2, e3〉 = 〈( ∂
∂x2

Γi33 − ∂
∂x3

Γi32 + Γm33Γim2 − Γm32Γim3)ei, e3〉

= ( ∂
∂x2

Γ3
33 − ∂

∂x3
Γ3

32 + Γm33Γ3
m2 − Γm32Γ3

m3)〈e3, e3〉

= ( ∂
∂x2

Γ3
33 − ∂

∂x3
Γ3

32 + Γm33Γ3
m2 − Γm32Γ3

m3) = 0

Therefore S = 0. We can plot the circular symmetric elements in the
figure below (at α = 1): κ = (1− α

R) and derivatives are w.r.t. r.
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As discussed above each member of the foliation of ”hyperboloids” be-
comes flat near r = 0.

At r = 0,
For the 1st fundamental form:

E = (r3 + α3)2/3 = α2

F = 0

G =
r4

(r3 + α3)4/3
+ 1 = 1

and the 2nd fundamental form:

e = − (r3 + α3)1/3√
r4

(r3+α3)4/3
+ 1

= −α

f = 0

g =
2r(r3 + α3)2/3 − 3r4(r3 + α3)−1/3

(r3 + α3)4/3
/

√
r4

(r3 + α3)4/3
+ 1 = 0
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κ1 = g/G = 0 and κ2 = e/E = −1/α so κ1κ2 = 0.

Discussion: The full curvature tensor is given by

[∇X ,∇Y ](Z)−∇[X,Y ](Z)

whereX,Y, Z are vector fields. WhenX and Y are elements of an orthogonal
frame field this reduces to

[∇i,∇j ](Z)

as employed above giving S = 2Σi<j〈[∇i,∇j ]ei, ej〉

The curvature of the ”hyperboloids” (non-zero away from r = 0) cap-
tures the rate of divergence of the gravitational flux compared to flat space.
Clearly the curvature tensor does not. The ratio of gravitational flux

=
Ar
AR

=
4πr2

4πR2
=

r2

R2

Consider the example of 3-D space in spherical coordinates with a metric
ds2 = dr2 + r2(dθ2 + sin2θdφ2). It is flat. However, restricting to a sphere
of given radius r = a, that sphere is curved with metric

dσ2 = a2(dθ2 + sin2θdφ2)

We can consider all such spheres as a foliation indexed by a. This analysis
becomes of crucial importance in the discussion of rotating Black Holes. See
the article The Kerr Metric.

*** Footnote: Derivation of Energy Equation:

The geodesic equations

d
ds [gii

dxi

ds ] = 1
2Σ3

j=0∂igjj
dxj

ds
dxj

ds for 0 ≤ i ≤ 3 give the geodesic equations
of motion with respect to the arclength parameter s.

The solution of the field equations of General Relativity was given by
Karl Schwarzschild in 1916 who derived the spherically symmetric solution

ds2 = (1− α
R)dt2 − (1− α

R)−1dR2 −R2(dθ2 + sin2θdφ2)
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where t is the time ’at infinity’, R = (r3 + α3)1/3 is the area radius, and
α = 2GM .

g00 = 1− α
R , g11 = (1− α

R)−1, g22 = R2, and g33 = R2sin2θ.

∂0gjj = 0 for all j so g00
dx0

ds = constant = E where E is the total energy
and can be identified as the Hamiltonian of the system.

∂3gjj = 0 for all j so g33
dx3

ds = constant = L where L is the angular
momentum.

The gravitational field is spherically symmetric so we can transform the
angle coordinates to our convenience. So, letting θ = π/2 we have

g33
dx3

ds = R2 dφ
ds = L

For convenience in what follows let κR = 1− α
R

For a photon following a geodesic path

dγ
ds = dt

ds∂t + dR
ds ∂R + dθ

ds∂θ + dφ
ds ∂φ

ds2 = (1− α
R)dt2 − (1− α

R)−1dR2 −R2(dθ2 + sin2θdφ2)

The inner product 0 = 〈dγds ,
dγ
ds 〉

= ( dtds)
2〈∂t, ∂t〉+ (dRds )2〈∂R, ∂R〉+ (dθds )2〈∂θ, ∂θ〉+ (dφds )2〈∂φ, ∂φ〉

= (E/κR)2κR − (dRds )2κ−1
R − (dφds )2R2

= E2κ−1
R − (dRds )2κ−1

R − ( L
R2 )2R2 = E2κ−1

R − (dRds )2κ−1
R −

L2

R2

Then

E2κ−1
R = (dRds )2κ−1

R + L2

R2

E2 = (dRds )2 + κR
L2

R2

So, the energy equation is:
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E2 = (dRds )2 + κR
L2

R2

To compute the energy equation for a material particle of unit mass we
replace s with proper time τ and then 1 = 〈dγdτ ,

dγ
dτ 〉 giving the energy equation

E2 = (dRdτ )2 + κR(1 + L2

R2 )

Appendix:

Local Isometries:

Consider first polar coordinates in the plane. With r as the radial length
and θ as the angle a radial line makes relative to the horizontal we can deduce
that the metric will be ds2 = dr2 + r2dθ2. Now consider the transformation:

x = rcosθ

y = rsinθ

That is, (x, y) = Φ(r, θ) = (rcosθ, rsinθ)

Then (
dx
dy

)
=

(
cosθ −rsinθ
sinθ rcosθ

)(
dr
dθ

)
= DΦ

(
dr
dθ

)

and

dx2+dy2 =

(
dx
dy

)T (
1 0
0 1

)(
dx
dy

)
= [DΦ

(
dr
dθ

)
]T
(

1 0
0 1

)
[DΦ

(
dr
dθ

)
]

Then

dx2+dy2 =

(
dr
dθ

)T
DΦT

(
1 0
0 1

)
DΦ

(
dr
dθ

)
=

(
dr
dθ

)T
(DΦT )(DΦ)

(
dr
dθ

)

Then

dx2 + dy2 =

(
dr
dθ

)T (
1 0
0 r2

)(
dr
dθ

)
= dr2 + r2dθ2
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Therefore Φ is a local isometry.

Now consider spherical coordinates. With r as the radial length and θ
and φ corresponding to latitude and longitude we can deduce that the metric
will be ds2 = dr2 + r2(dθ2 + sin2θdφ2). Now consider the transformation:

x = rsinθcosφ

y = rsinθsinφ

z = rcosθ

That is, (x, y, z) = Φ(r, θ, φ) = (rsinθcosφ, rsinθsinφ, rcosθ)

Then dx
dy
dz

 =

 sinθcosφ rcosθcosφ −rsinθsinφ
sinθsinφ rcosθsinφ rsinθcosφ
cosθ −rsinθ 0


 dr

dθ
dφ

 = DΦ

 dr
dθ
dφ


and

dx2 + dy2 + dz2 =

 dx
dy
dz


T  1 0 0

0 1 0
0 0 1


 dx
dy
dz



= [DΦ

 dr
dθ
dφ

]T

 1 0 0
0 1 0
0 0 1

 [DΦ

 dr
dθ
dφ

]

Then

dx2 + dy2 + dz2 =

 dr
dθ
dφ


T

(DΦ)T (DΦ)

 dr
dθ
dφ


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Then

dx2+dy2+dz2 =

 dr
dθ
dφ


T  1 0 0

0 r2 0
0 0 r2sin2θ


 dr

dθ
dφ

 = dr2+r2(dθ2+sin2θdφ2)

Therefore Φ is a local isometry.

Applying this to vectors we have:
First for polar coordinates:

(x1)2 + (x2)2 = (dx2 + dy2)(x,x)

and

(dx2 + dy2)(x,x) =

(
x1

x2

)T (
1 0
0 1

)(
x1

x2

)

= [DΦ

(
x1

x2

)
]T
(

1 0
0 1

)
[DΦ

(
x1

x2

)
]

Then

(dx2 + dy2)(x,x) =

(
x1

x2

)T
(DΦ)T (DΦ)

(
x1

x2

)

Then

(dx2 + dy2)(x,x) =

(
x1

x2

)T (
1 0
0 r2

)(
x1

x2

)
= (x1)2 + r2(x2)2

= (dr2 + r2dθ2)(x,x)
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And for spherical coordinates:

(x1)2 + (x2)2 + (x3)2 = (dx2 + dy2 + dz2)(x,x)

and

(dx2 + dy2 + dz2)(x,x) =

 x1

x2

x3


T  1 0 0

0 1 0
0 0 1


 x1

x2

x3



= [DΦ

 x1

x2

x3

]T

 1 0 0
0 1 0
0 0 1

 [DΦ

 x1

x2

x3

]

Then

(dx2 + dy2 + dz2)(x,x) =

 x1

x2

x3


T

(DΦ)T (DΦ)

 x1

x2

x3


Then

(dx2+dy2+dz2)(x,x) =

 x1

x2

x3


T  1 0 0

0 r2 0
0 0 r2sin2θ


 x1

x2

x3

 = (x1)2+r2((x2)2+sin2θ(x3)2)

= (dr2 + r2(dθ2 + sin2θdφ2))(x,x)

Is the transformation from r → R a local isometry?

Let (t, R, θ, φ) = Φ(t, r, θ, φ) = (t, (r3 + α3)1/3, θ, φ)

∂tt = 1

∂tR = 0
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∂tθ = 0

∂tφ = 0

∂rt = 0

∂rR = (1/3)(r3 + α3)−2/3(3r2)

∂rθ = 0

∂rφ = 0

∂θt = 0

∂θR = 0

∂θθ = 1

∂θφ = 0

∂φt = 0

∂φR = 0

∂φθ = 0

∂φφ = 1

Then:

DΦ =


1 0 0 0
0 ∂rR 0 0
0 0 1 0
0 0 0 1


Set

g =


1− α/r 0 0 0

0 (1− α/r)−1 0 0
0 0 r2 0
0 0 0 r2sin2θ



and set

g =


1− α/R 0 0 0

0 (1− α/R)−1 0 0
0 0 R2 0
0 0 0 R2sin2θ



Let x be a vector w.r.t. the basis (et, eR, eθ, eφ, ) where eσ = ∂
∂σ/|

∂
∂σ |

and x be the same vector w.r.t the basis (et, er, eθ, eφ, ). The vectors are
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assumed to be carrying a Minkowski signature. Then,

x =


x0

ix1

ix2

ix3

 and x = DΦx

Let < x,x >g be the metric represented by g and < x,x >g be the
metric represented by g. Then

< x,x >g= (x)T g(x) = (DΦx)T g(DΦx) = xT (DΦ)T g(DΦ)x =< x,x >(DΦ)T g(DΦ)

But (DΦ)T g(DΦ) 6= g unless r = R which is not the case. So, DΦ is
not a local isometry and therefore < x,x >g 6=< x,x >g. Therefore g and
g do not represent the same metric. We did not need to plug in the specific
expression for ∂rR so we can say that any Φ(t, r, θ, φ) = (t, f(r), θ, φ) pro-
duces a different metric than g if f(r) 6= (r3 + α3)1/3.

Now, using g in what follows we see that letting r = α we have:

R = (r3 + α3)1/3 = (2α3)1/3 =
3
√

2α

ds2 = (1− 1/
3
√

2)dt2 − (1− 1/
3
√

2)−1dR2 − 4(2)2/3dΩ2

So, time slows down by a factor of 1 − 1/ 3
√

2 compared to a clock ’at
infinity’ and radial length contracts by the same factor. But, there is no
coordinate singularity at r = α meaning time does not slow down and stop
there relative to a clock ’at infinity’.

********************************

Text is available under the Creative Commons Attribution-ShareAlike
License (https://creativecommons.org/licenses/by-sa/4.0/)
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